Learn more about Search Results ローン - Page 45

FastAPI、AWS Lambda、およびAWS CDKを使用して、大規模言語モデルのサーバーレスML推論エンドポイントを展開します

データサイエンティストにとって、機械学習(ML)モデルを概念実証から本番環境へ移行することは、しばしば大きな課題を提供します主な課題の一つは、良好なパフォーマンスを発揮するローカルトレーニング済みモデルをクラウドに展開して、他のアプリケーションで使用することですこのプロセスを管理することは手間がかかる場合がありますが、適切なツールを使用することで、...

Btech卒業後に何をすべきですか?

Btechの後に何をすべきですか?このよくある質問は、最終学年や最近卒業した学生にとって悩みの種です。多くの人々が従来のキャリアパスを選ぶ一方、一部の人々は新しい分野でのキャリアを研究し探求することを決めます。より多くの選択肢を探索し、スキル開発に重点を置き、継続的な学習、進化する技術について常に最新情報を得ることにより、個人は速いペースのBtechの後の旅で成功することができます。この記事では、Btechの後の最良のキャリアオプションについて説明しています。 Btech卒業生の従来のキャリアパス エンジニアの仕事 ソフトウェアエンジニア/開発者: コンピューターサイエンスのBTechを持つソフトウェアエンジニアは、オンラインやモバイルアプリ、データベース管理、ソフトウェアアーキテクチャの開発に参加します。 ハードウェアエンジニア: ハードウェアエンジニアは、コンピューターハードウェアコンポーネントを作成、開発、テストし、最適な動作を確保します。 機械エンジニア: 製品設計、ロボット、産業機械など多様な産業で機械システムを開発、分析、構築します。 電気エンジニア: 電力発電、エレクトロニクス、通信、再生可能エネルギーシステムを計画、開発、維持します。 土木エンジニア: 建設、構造の安全性、環境持続性を維持しながら、インフラプロジェクトの計画、設計、構築、維持を行います。 宇宙航空エンジニア: 航空機、宇宙船、関連技術の設計、開発、テストの責任を担います。 化学エンジニア: 石油化学、医薬品、環境工学、材料科学など、幅広い産業でプロセスを作成、管理します。 環境エンジニア: 環境保護、持続可能性、廃棄物管理のソリューションを提供し、規制に適合します。 大学院研究と研究 MTechまたはME: BTech卒業生は、MTechまたはMEなどの大学院課程を追求することができます。これらには研究の可能性、高度なコースワーク、エンジニアリングの専門分野が含まれます。 MS: BTech卒業生は、研究、コースワーク、協力、論文の達成に焦点を当てた工学のMaster…

AWSにおけるマルチモデルエンドポイントのためのCI/CD

生産用機械学習ソリューションの再トレーニングと展開を自動化することは、モデルが共変量シフトを考慮しながら、誤りや不要な人間の介入を制限するための重要なステップです

2023年の製品マネージャーにとって最高のAIツール

AI市場の急速な拡大は、製品マネージャーの生産性向上に加えて、新しい職種の出現を促進する可能性があることに多くの人々が驚嘆しています。しかし、数千ものツールがアクセス可能で、毎週さらに多くのツールが登場すると、圧倒されてしまうことが簡単です。 ClickUp ClickUpは、あらゆる規模やセクターのチーム間のコミュニケーションを促進するオールインワンのプロジェクト管理ツールです。製品の作成や計画などのタスクに対して、使いやすく、適応性が高いため、製品管理の解決策として、ClickUpは主要な位置を占めています。多数のプレメイドの製品チームテンプレートを備えた高度に柔軟なプラットフォームであり、ClickUpの適応性と有用なツールにより、どのチームでもプラットフォームを自分たちのニーズやワークフローのニュアンスに合わせてカスタマイズできます。 Jam JamGPTは、製品マネージャーが問題を理解し、エンジニアリングチームに伝えることができる潜在的な修正箇所を見つけるのを支援する最新のAIツールです。生産性が向上し、技術的な議論にアクセスできるようになります。製品マネージャーが非技術的な背景でもコンテキストを提供できるJamGPTの容量は、各レベルでの機能の展開を容易にするものです。ClickUp、Slack、またはGithubなどのプロジェクト管理ツールに、インテリジェントなAIアシスタントと主要なバグレポート機能で収集された貴重なデータを統合することで、製品の改善の共有と作業がスムーズになります。 Motion Motionは、AIを利用して、ミーティング、タスク、プロジェクトを考慮した日々のスケジュールを作成する賢明なツールです。計画の手間を省いて、より生産的な生活を始めましょう。 ChatGPT ほとんどの質問に適切な回答を提供することで、検索エンジンクエリーよりも優れた体験を製品マネージャーに提供することで、ChatGPTは最も人気のある自然言語処理(NLP)ツールの1つになりました。製品マネージャーが行ったテストでは、結果は彼らが尋ねた質問に敏感であることが示されました。 ChatGPTの適応性は、主要なセールスポイントです。製品の成長、顧客サービスなどを向上させるためにユニークな質問に回答することができます。製品マネージャーにとって役立つため、提出されたデータを分析して顧客の痛点を特定し、次に開発する製品のアイデアを提供し、感情分析を実行することができます。 Canva Canvaの無料の画像ジェネレーターは、製品マネージャーの日々の業務にどれだけ役立つかを簡単に確認できます。ステークホルダーミーティング、製品ローンチなどでプレゼンテーションやデッキに使用する適切なビジュアルを見つけることは常に難しかったです。しばしば、望むものを明確に心に描いているのに、利用可能なストック写真を修正する必要があります。CanvaのAI駆動エディタを使用すると、トピックをブレインストーミングし、入力に基づいて理想のビジュアルを見つけるための検索結果を微調整できます。 TLDV 正直に言いますと、製品マネージャーとしてのあなたの時間の多くはミーティングに費やされます。ステークホルダーに新しい製品機能を提示したり、エンジニアリングチームにそれを販売しようとしたりする場合には、強力なプレゼンテーションが不可欠です。TLDVは、ミーティングのノートを取り、それらを箇条書きにまとめて、より生産的になるためのAIプログラムです。ユーザーとのインタビューで最大限に活用するには、ノートを取ることに心を配る必要があります。TLDVは、そのような問題を解決します。 Notion 最も人気のあるノートアプリの1つであるNotionは、最新のAI機能でアップグレードされました。これにより、製品マネージャーは、ビジネスウィキや製品ロードマップを確立するための能力の高い人工知能の支援を受け、コミュニケーションを改善し、要約などの繰り返しの作業にかかる時間を削減することができます。 Otter.AI Otter.aiは、会議や議論を正確に記録し、転写するAI駆動プラットフォームです。AIを活用して、会話を瞬時に転写し、検索可能でアクセス可能で暗号化されたメモを簡単に共有できるようにします。 Otterは、自動的にZoom、Microsoft Teams、Google Meetミーティングに参加して録音することができます。キーポイントが強調され、タスクが割り当てられ、簡単に共有および呼び出せる要約が生成されます。ビジネス、教育、個人設定のユーザーが、iOS、Android、Chromeで時間を節約するのに役立つと感じています。多くのユーザーは、その精度、多様性(さまざまなスピーカーから転写できる)、時間を節約する自動スライドキャプチャ機能を称賛しています。 Collato あなたのチームが生成した書類の山から特定の製品情報を追跡できないですか?Collatoは、チームの人々が必要とする情報を追跡し、クリックひとつで簡単に利用できるようにする人工知能アシスタントです。製品マネージャーは、様々な技術をシングルビジュアルマップに同期し、統合することにより、情報のサイロを減らすことができます。製品ロードマップの重要な文書が紛失した際に毎回30分を無駄にする代わりに、必要なすべての情報に簡単にアクセスできるようになります。 Midjourney…

DeepMindの研究者たちは、任意のポイントを追跡するための新しいAIモデルであるTAPIRをオープンソース化しましたこのモデルは、ビデオシーケンス内のクエリポイントを効果的に追跡します

コンピュータビジョンは、人工知能の最も人気のある分野の1つです。コンピュータビジョンを使用したモデルは、デジタル画像、動画、またはその他の視覚的入力など、さまざまな種類のメディアから有意義な情報を導き出すことができます。それは、機械が視覚情報を知覚・理解し、その詳細に基づいて行動する方法を教えるものです。新しいモデルであるTracking Any Point with per-frame Initialization and Temporal Refinement(TAPIR)の導入により、コンピュータビジョンは大きく前進しました。TAPIRは、ビデオシーケンスで特定の関心点を効果的に追跡することを目的として設計されました。 TAPIRモデルの背後にあるアルゴリズムは、Google DeepMind、VGG、エンジニアリングサイエンス学科、そしてオックスフォード大学の研究者チームによって開発されました。TAPIRモデルのアルゴリズムは、2つのステージ、すなわちマッチングステージとリファインメントステージから構成されています。マッチングステージでは、TAPIRモデルは各ビデオシーケンスフレームを個別に分析し、クエリポイントに適した候補点マッチを見つけます。このステップは、各フレームでクエリポイントの最も関連性が高い点を特定することを目的としており、TAPIRモデルがビデオ全体でクエリポイントの移動を追跡できるようにするため、フレームごとにこの手順を実行します。 候補点マッチが特定されるマッチングステージには、リファインメントステージの使用が続きます。このステージでは、TAPIRモデルは、局所的相関に基づいて軌跡(クエリポイントがたどるパス)とクエリ特徴を更新し、各フレームの周囲の情報を考慮してクエリポイントの追跡の精度と正確性を向上させます。リファインメントステージにより、局所的相関を統合することで、モデルのクエリポイントの動きを正確に追跡し、ビデオシーケンスの変動に対応する能力が向上します。 TAPIRモデルの評価には、ビデオトラッキングタスクの標準化された評価データセットであるTAP-Vidベンチマークが使用されました。その結果、TAPIRモデルは、ベースライン技術よりも明らかに優れた性能を発揮しました。性能改善は、平均ジャッカード(AJ)という指標を用いて測定され、DAVIS(Densely Annotated VIdeo Segmentation)ベンチマークにおいて、TAPIRモデルは他の手法に比べてAJで約20%の絶対的な改善を達成したことが示されました。 モデルは、長いビデオシーケンスでの高速な並列推論を容易にするように設計されており、複数のフレームを同時に処理できるため、トラッキングタスクの効率を向上させます。チームは、モデルをライブで適用できるように設計し、新しいビデオフレームが追加されるたびにポイントを処理・追跡できるようにしています。256×256ビデオで256ポイントを約40フレーム/秒の速度で追跡でき、解像度の高い映画を処理できるように拡張することもできます。 チームは、ユーザーがインストールせずにTAPIRを試すことができる2つのオンラインGoogle Colabデモを提供しています。最初のColabデモでは、ユーザーが自分のビデオでモデルを実行し、モデルのパフォーマンスをテストして観察するインタラクティブな体験を提供します。2番目のデモでは、オンラインでTAPIRを実行することに焦点を当てています。また、提供されたコードベースをクローンし、モダンなGPUで自分自身のWebカメラのポイントを追跡することによって、ユーザーはTAPIRをライブで実行することができます。

AWS CDK を使用して Amazon SageMaker Studio ライフサイクル構成をデプロイします

Amazon SageMaker Studioは、機械学習(ML)のための最初の完全に統合された開発環境(IDE)ですStudioは、データを準備し、モデルを構築、トレーニング、展開するために必要なすべてのML開発ステップを実行できる単一のWebベースのビジュアルインターフェースを提供しますライフサイクル設定は、Studioライフサイクルイベントによってトリガーされるシェルスクリプトです [...]

機械学習の解説:アルゴリズム、モデル、および応用の明らかにする

この技術の変革的な可能性を引き出すために、様々なアルゴリズム、モデル、実践的な応用を発見してください

AIがオンエア中:世界初のRJボット、アシュリーに会おう

オレゴン州ポートランドに拠点を置く人気ラジオ局、Live 95.5は、Futuri MediaのRadioGPTテクノロジーによって動かされる世界初の人工知能RJ、AI Ashleyを導入することで未来に向けた大胆な一歩を踏み出しました。このAIホストは、彼女の魅力とシームレスな配信で聴衆を魅了し、放送を革新しています。AI Ashleyの魅力的な世界と、ラジオ愛好家やテクノロジー愛好家たちの反応を探ってみましょう。 AIが中心になる:AI Ashley、Live 95.5の新しいRJセンセーションを紹介 Live 95.5は、彼らの愛される昼のホスト、Ashley ElzingaのAIクローンであるAI Ashleyを導入することで、歴史を作りました。毎日午前10時から午後3時まで、聴取者は彼女の魅力的な人格で空気を支配するAI Ashleyのお馴染みの声で迎えられます。Live 95.5は、この画期的な動きで伝統的なラジオ放送に新しいアプローチをもたらすことを目指しています。 参照:AphidのaClonesであなたのクローンがあなたのために働く 不気味なクローン:AI Ashleyの驚くべきリアルな声 Live 95.5にチューニングする聴取者は、AI Ashleyの声と元のホスト、Ashley Elzingaの声との類似性に驚くでしょう。AI生成された声は非常にリアルで、人間とAIの相手を区別することが困難になります。AI Ashleyは、聴取者と交流し、特別なアナウンスを行い、ラジオ体験に興味深いダイナミックを加えます。 参照:SFから現実に:あなたのAIのドッペルゲンガー マイクの背後にあるAI:Futuri…

PyTorchを使った転移学習の実践ガイド

この記事では、転移学習と呼ばれる技術を使用して、カスタム分類タスクに事前学習済みモデルを適応する方法を学びますPyTorchを使用した画像分類タスクで、Vgg16、ResNet50、およびResNet152の3つの事前学習済みモデルで転移学習を比較します

現代のデータエンジニアリングにおいてMAGE:効率的なデータ処理を可能にする

イントロダクション 今日のデータ駆動型の世界では、あらゆる業界の組織が膨大なデータ、複雑なパイプライン、そして効率的なデータ処理の必要性に直面しています。Apache Airflowなどの従来のデータエンジニアリングソリューションは、これらの困難に対処するためにデータ操作をオーケストレーションし、制御することで重要な役割を果たしてきました。しかし、技術の急速な進化により、データエンジニアリングの景観を再構築するMageという新しい競合者が登場しました。 学習目標 第3者のデータをシームレスに統合および同期化すること 変換のためのPython、SQL、およびRによるリアルタイムおよびバッチパイプラインの構築 データ検証で再利用可能かつテスト可能なモジュラーコード 寝ている間に複数のパイプラインを実行、監視、およびオーケストレーションすること クラウド上で協働し、Gitとバージョン管理を行い、利用可能な共有ステージング環境を待つことなくパイプラインをテストすること Terraformテンプレートを介してAWS、GCP、およびAzureなどのクラウドプロバイダーでの高速な展開 データウェアハウスで非常に大きなデータセットを直接変換するか、Sparkとのネイティブ統合を介して変換すること 直感的なUIを介して組み込みの監視、アラート、および観測性 まるで腕木式に簡単でしょうか?それならMageを絶対に試してみるべきです! この記事では、Mageの機能と機能性について説明し、これまでに学んだことやそれを使用して構築した最初のパイプラインを強調します。 この記事はData Science Blogathonの一部として公開されました。 Mageとは何ですか? Mageは、AIによって駆動され、機械学習モデル上に構築された現代的なデータオーケストレーションツールであり、かつてないほどのデータエンジニアリングプロセスを効率化し最適化することを目的としています。これは、データ変換と統合のための効果的でありながら簡単なオープンソースデータパイプラインツールであり、Airflowのような確立されたツールに対して強力な代替手段となる可能性があります。自動化と知能の力を組み合わせることで、Mageはデータ処理ワークフローを革新し、データの取り扱いと処理の方法を変革しています。Mageは、その無比の機能と使いやすいインターフェイスにより、これまでにないデータエンジニアリングプロセスの簡素化と最適化を目指しています。 ステップ1:クイックインストール Mageは、Docker、pip、およびcondaコマンドを使用してインストールでき、またはクラウドサービス上で仮想マシンとしてホストできます。 Dockerを使用する #Dockerを使用してMageをインストールするコマンドライン >docker…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us