Learn more about Search Results モード - Page 45

「コーネリスネットワークスのソフトウェアエンジニアリング担当副社長、ダグ・フラーラー氏 – インタビューシリーズ」

ソフトウェアエンジニアリングの副社長として、DougはCornelis Networksのソフトウェアスタック全体、Omni-Path Architectureドライバ、メッセージングソフトウェア、組み込みデバイス制御システムを含むすべての側面に責任を持っていますCornelis Networksに参加する前、DougはRed Hatでクラウドストレージとデータサービスのソフトウェアエンジニアリングチームを率いていましたDougのHPCとクラウドコンピューティングにおけるキャリアは[...]です

Macでの安定したDiffusion XLと高度なCore ML量子化

Stable Diffusion XLは昨日リリースされ、素晴らしいです。大きな(1024×1024)高品質の画像を生成することができます。新しいトリックにより、プロンプトへの適合性が向上しました。最新のノイズスケジューラの研究により、非常に暗いまたは非常に明るい画像を簡単に生成することができます。さらに、オープンソースです! 一方、モデルはより大きくなり、したがって一般的なハードウェアでの実行が遅くなり、困難になりました。Hugging Faceのdiffusersライブラリの最新リリースを使用すると、16 GBのGPU RAMでCUDAハードウェア上でStable Diffusion XLを実行できるため、Colabの無料層で使用することができます。 過去数か月間、人々がさまざまな理由でローカルでMLモデルを実行することに非常に興味を持っていることが明確になってきました。これにはプライバシー、利便性、簡単な実験、または利用料金がかからないことなどが含まれます。AppleとHugging Faceの両方でこの領域を探索するために、私たちは一生懸命取り組んできました。私たちはApple SiliconでStable Diffusionを実行する方法を示したり、Core MLの最新の進化を利用してサイズとパフォーマンスを改善するための6ビットのパレット化を紹介したりしました。 Stable Diffusion XLでは、次のようなことを行いました: ベースモデルをCore MLにポートし、ネイティブのSwiftアプリで使用できるようにしました。 Appleの変換および推論リポジトリを更新し、興味のあるファインチューニングを含むモデルを自分で変換できるようにしました。 Hugging Faceのデモアプリを更新し、Hubからダウンロードした新しいCore ML Stable…

AIアートのマスタリング:中間の旅とプロンプトエンジニアリングへの簡潔なガイド

Midjourneyのマスタリングに最適な初心者向けガイドに飛び込んでみてくださいAI画像生成、高度なプロンプト、革新的な機能を簡単で分かりやすいステップで探索してくださいAI芸術の力を活用したい愛好家やプロフェッショナルに最適です

「洪水耐性のための地理空間分析」

はじめに 洪水に対する地理空間分析は、都市計画、環境管理、公衆衛生の複雑な問題を解決するために位置情報ベースのデータを使用します。これにより、隠れたつながりやトレンドが明らかになり、リソースの割り当てに関するより良い意思決定や生活の向上が可能になります。このガイドでは、ArcGISを使用して洪水を分析する魅力的なプロジェクトを探求し、地理空間分析が現実の状況にどのように影響を与えるかを学びます。まるで新しい世界を見るための超能力のようです! 学習目標 位置情報ベースのデータを活用して貴重な洞察を得るための地理空間分析の概念と重要性を理解していただきたい。 都市計画、環境管理、物流、農業、公衆衛生などの分野での地理空間分析の多様な応用について理解していただきたい。 ArcGISソフトウェアを利用して、インドのウッタラーカンド州で洪水管理のための地理空間分析をどのように適用するかを学んでいただきたい。 洪水管理に関連する課題を特定し、地理空間分析がこれらの課題に効果的に対処する方法を理解していただきたい。 地域の地形、水文、人口密度に関連する地理空間データのインポート、操作、分析の実践的なスキルを身につけていただきたい。 ArcGISの地理空間ツールを使用して、洪水の発生しやすい地域の特定、脆弱性評価、リスク分析の技術を探求していただきたい。 この記事はデータサイエンスブログマラソンの一部として公開されました。 洪水の地理空間分析の理解 地理空間分析とは何ですか? 洪水の地理空間分析は、先端技術を使用して洪水をより良く理解し管理するための魅力的な分野です。このトピックが初めての方のために、地理空間分析、洪水の地理空間分析の重要性、ArcGISの紹介の3つの主要な領域に分けて説明します。 地理空間分析は、地理データを研究し解釈することで洞察を得ることを目的としています。場所、特徴、属性などの要素間の関係を理解することに関連しています。洪水分析では、地理空間分析は降雨、地形、土地被覆、インフラに関連するデータを分析し可視化することで、洪水リスクを評価し、脆弱な地域を特定し、効果的な洪水管理戦略を開発するのに役立ちます。 地理空間分析の重要性 では、なぜ洪水の地理空間分析が重要なのでしょうか?洪水の影響を軽減するために、洪水の地理空間分析は重要な役割を果たしています。高度モデルや河川ネットワークなどの空間データを調査することで、洪水の発生しやすい地域を特定し、洪水イベントの深刻さを評価することができます。この知識は、洪水制御構造物の建設、排水システムの改善、早期警戒システムの導入など、行動とリソースの優先順位付けに役立ちます。結果として、洪水イベント中に人命を救い、財産を保護することができます。 ArcGISの紹介 洪水の地理空間分析に関して、利用可能な強力なツールの1つはArcGISです。ArcGISは、Esriによって開発された包括的なマッピング、空間データ管理、分析ソフトウェアです。洪水分析を含む高度な地理空間分析タスクを実行するためのさまざまなツールと機能を提供しています。 ArcGISを使用すると、衛星画像やデジタル標高モデルなどのさまざまな空間データタイプを統合して、詳細な地図を作成し、空間的な関係を理解することができます。洪水分析では、ArcGISを使用して降雨強度、標高、土地被覆などのデータを分析し、洪水のパターンと潜在的な影響についての洞察を得ることができます。使いやすいインターフェースにより、洪水モデリング、水文分析、洪水リスク評価のタスクを実行することができます。ArcGISは、対話的な地図、グラフ、レポートを作成することもでき、関係者や意思決定者に対して洪水関連情報を理解し伝えるのが容易になります。 要するに、ArcGISなどのツールを使った洪水の地理空間分析は、洪水のパターン、脆弱性、潜在的な影響に関する貴重な洞察を得ることを可能にします。地理空間データと分析を活用して洪水管理戦略を強化し、復興力を高め、洪水リスクを軽減することが目的です。 現代生活における地理空間分析の重要性 地理空間分析は、現代のさまざまな分野で重要です。貴重な洞察を提供し、意思決定を支援します。以下は、その重要性を強調するいくつかの要点です: 都市計画と開発 地理空間分析は、効率的な都市計画、インフラストラクチャの最適な配置、住宅、商業、レクリエーションエリアの適切な場所の特定に役立ちます。…

「Amazon SageMaker StudioでAmazon SageMaker JumpStartを使用して安定したDiffusion XLを利用する」

「今日、私たちはお知らせすることを喜んでいますStable Diffusion XL 1.0(SDXL 1.0)がAmazon SageMaker JumpStartを通じて顧客に利用可能ですSDXL 1.0は、Stability AIからの最新の画像生成モデルですSDXL 1.0の改良点には、さまざまなアスペクト比でのネイティブな1024ピクセルの画像生成が含まれていますプロフェッショナルな使用を目的としており、高解像度に合わせてキャリブレーションされています...」

「GANの流行 | ファッション画像生成のステップバイステップガイド」

イントロダクション この記事では、生成対抗ネットワーク(GAN)とその驚異的な画像生成能力について探求します。GANは生成モデリングの分野を革新し、敵対的学習を通じて新しいコンテンツを作成する革新的なアプローチを提供しています。 このガイドでは、GANの基本的な概念から始まり、徐々にファッション画像生成の複雑さに入り込んでいきます。実践的なプロジェクトとステップバイステップの手順を通じて、TensorFlowとKerasを使用してGANモデルを構築してトレーニングする方法を詳しく説明します。 GANのポテンシャルを引き出し、AIの魔法をファッションの世界で目撃してください。経験豊富なAIプラクティショナーまたは好奇心旺盛な愛好家であっても、「GANS in Vogue」は、感動的なファッションデザインを作成し、生成的アートの限界を押し広げるためのスキルと知識を提供します。GANの魅力的な世界に飛び込み、内なる創造力を解き放ちましょう! この記事は、データサイエンスブログマラソンの一環として公開されました。 生成対抗ネットワーク(GAN)の理解 GANとは何ですか? 生成対抗ネットワーク(GAN)は、ジェネレータとディスクリミネータの2つのニューラルネットワークから構成されています。ジェネレータは新しいデータサンプルの生成を担当し、ディスクリミネータの役割はジェネレータによって生成された偽のデータと実際のデータを区別することです。2つのネットワークは競争的なプロセスを通じて同時にトレーニングされ、ジェネレータはよりリアルなサンプルの生成能力を向上させ、ディスクリミネータはリアルと偽のデータをより正確に識別する能力を向上させます。 GANはどのように機能しますか? GANは、ジェネレータとディスクリミネータが互いに対戦するゲームのようなシナリオに基づいています。ジェネレータは実際のデータに似たデータを作成しようとし、ディスクリミネータは実際のデータと偽のデータを区別しようとします。ジェネレータはこの敵対的なトレーニングプロセスを通じてよりリアルなサンプルの生成を学習します。 GANの主要なコンポーネント GANを構築するには、いくつかの重要なコンポーネントが必要です: ジェネレータ:新しいデータサンプルを生成するニューラルネットワーク。 ディスクリミネータ:データを実際のデータまたは偽のデータとして分類するニューラルネットワーク。 潜在空間:ジェネレータがサンプルを生成するための入力として使用するランダムなベクトル空間。 トレーニングループ:ジェネレータとディスクリミネータを交互にトレーニングする反復プロセス。 GANの損失関数 GANのトレーニングプロセスは特定の損失関数に依存しています。ジェネレータはジェネレータの損失を最小化し、よりリアルなデータの生成を促します。同時に、ディスクリミネータはディスクリミネータの損失を最小化し、リアルと偽のデータを区別する能力を向上させます。 プロジェクト概要:GANを用いたファッション画像生成 プロジェクトの目標 このプロジェクトでは、Fashion MNISTデータセットのファッション画像に似た新しいファッション画像を生成するためのGANの構築を目指します。生成された画像は、ドレス、シャツ、パンツ、靴など、さまざまなファッションアイテムの重要な特徴を捉える必要があります。…

「合成キャプションはマルチモーダルトレーニングに役立つのか?このAI論文は、合成キャプションがマルチモーダルトレーニングにおけるキャプションの品質向上に効果的であることを示しています」

マルチモーダルモデルは、人工知能の分野における最も重要な進歩の一つです。これらのモデルは、画像やビデオを含む視覚的な情報、自然言語を含むテキスト情報、音声や音などの音響的な情報など、複数のモダリティからのデータを処理し理解するために設計されています。これらのモデルは、これらの様々なモダリティからのデータを組み合わせ分析し、多様なデータの種類にわたる理解と推論を必要とする複雑なタスクを実行することができます。大規模なマルチモーダルモデルは、画像とテキストのペアで事前学習することで、さまざまなビジョン関連のタスクで高いパフォーマンスを発揮することが示されています。 研究者たちは、ビジョンタスクで使用される大規模なマルチモーダルモデルのトレーニングにおいて、画像とテキストのペアなどのウェブデータの有用性を向上させようと試みていますが、不適切に整列した画像とテキストのペア、不良なデータソース、低品質なコンテンツなど、オンラインデータは頻繁にノイズが多く情報量が不足しています。現在の存在する手法はデータのノイズを減らすものの、しばしばデータの多様性の喪失をもたらします。そのため、研究チームは、ウェブスクレイピングされたデータにおけるキャプションの品質に焦点を当てたアプローチを提案しています。 主な目標は、曖昧または情報不足のテキストを持つ画像とテキストのペアの有用性を向上させるために、生成されたキャプションがどのように役立つかを探究することです。そのため、チームは複数のミキシング戦術をテストし、生のサイトキャプションとモードによって生成されたキャプションを組み合わせました。このアプローチは、DataCompのベンチマークで提案されたトップのフィルタリング戦略を大幅に上回りました。1億2800万の画像テキストペアの候補プールを使用して、ImageNetの改善は2%であり、38のジョブ全体で平均改善は4%です。彼らの最善の手法は、FlickrとMS-COCOの検索タスクで従来の手法を上回り、彼らの戦略が実世界の状況での実現可能性を示しています。 チームは、人工キャプションがテキスト監督の有用なツールである理由について調査しました。複数の画像キャプションモデルをテストすることにより、チームは、マルチモーダルトレーニングにおいてモデルが生成するキャプションの有用性が、NoCaps CIDErなどの確立された画像キャプションベンチマークでのパフォーマンスに常に依存しないことを示しました。これは、従来の画像キャプションベンチマークだけに頼らず、特にマルチモーダルな活動において生成されたキャプションを評価する必要性を強調しています。 この研究は、DataCompのデータセットである12.8億の画像テキストペアを使用して、生成されたキャプションの広範な適用を調査しました。この実験は、合成テキストの制約を明らかにし、トレーニングデータの拡大に伴い画像キュレーションの重要性が高まっていることを強調しています。チームによって共有されたinsightsは以下の通りです: キャプションモデルの選択:標準的なベンチマークに基づいて事前学習されたネットワークを画像キャプションのために微調整することは、マルチモーダルトレーニングにおけるキャプションの効果的な生成につながらない場合があります。CLIP-Sなどのリファレンスフリーメトリックは、生成されたキャプションのトレーニング品質をよりよく反映します。 複数のソースからのキャプションの組み合わせ:生のキャプションと合成キャプションのフィルタリングやミキシングには、DataCompベンチマークでの小規模およびVoAGIスケールでのパフォーマンス向上がもたらされました。 合成キャプションの効果:個々のレベルでは、合成キャプションはノイズが少なく、視覚情報が豊富です。ただし、集団レベルでは、生のキャプションと比較して多様性に欠けます。 合成キャプションの利点のスケーラビリティ:最適なフィルタリングアプローチは、異なるデータスケールによって異なります。異なる数量での実験は、合成キャプションの制約を明らかにし、大規模なデータ領域では画像品質の制御と多様性のギャップがより重要になることを示します。

「AIが異星生命を探す訓練を受けています」

「氷の海の月から、一方が永遠の夜である惑星まで、ゴールディロックスゾーンには数え切れないほどの奇妙な世界が存在します - 理論上、宇宙人が進化する可能性がある領域です宇宙での生命の探求は、長い間人間の想像力を魅了してきました今や、コンピュータの助けを借りれば、科学者たちはこれまで以上に成功する可能性があります...」

「拡散を支配するための1つの拡散:マルチモーダル画像合成のための事前学習済み拡散モデルの調節」

画像生成AIモデルは、ここ数ヶ月でこの領域を席巻しています。おそらく、midjourney、DALL-E、ControlNet、またはStable dDiffusionなどについて聞いたことがあるかもしれません。これらのモデルは、与えられたプロンプトに基づいて写真のようなリアルな画像を生成することができます。与えられたプロンプトがどれほど奇妙であっても、ピカチュウが火星を走り回るのを見たいですか?これらのモデルのいずれかに依頼してみてください。きっと手に入るでしょう。 既存の拡散モデルは、大規模なトレーニングデータに依存しています。大規模と言っても本当に大きいです。たとえば、Stable Diffusion自体は、25億以上の画像キャプションのペアでトレーニングされました。ですので、自宅で独自の拡散モデルをトレーニングする予定がある場合は、計算リソースに関して非常に高額な費用がかかるため、再考することをお勧めします。 一方、既存のモデルは通常、非条件付きまたはテキストプロンプトのような抽象的な形式に基づいています。これは、画像を生成する際に1つの要素のみを考慮に入れることを意味し、セグメンテーションマップなどの外部情報を渡すことはできません。これは、大規模なデータセットに依存していることと組み合わさると、大規模な生成モデルがトレーニングされていないドメインでは、その適用範囲が制限されることを意味します。 この制限を克服するためのアプローチの1つは、特定のドメインに対して事前にトレーニングされたモデルを微調整することです。しかし、これにはモデルのパラメータへのアクセスと、フルモデルの勾配を計算するための膨大な計算リソースが必要です。さらに、フルモデルを微調整すると、その適用範囲と拡張性が制限されるため、新しいフルサイズのモデルが新しいドメインやモダリティの組み合わせごとに必要となります。また、これらのモデルのサイズが大きいため、微調整されたデータの小さなサブセットにすぐにオーバーフィットする傾向があります。 また、選択したモダリティに基づいてモデルをゼロからトレーニングすることも可能です。しかし、これはトレーニングデータの入手可能性によって制限され、モデルをゼロからトレーニングするのは非常に高価です。一方、推論時に事前にトレーニングされたモデルを目的の出力に向かってガイドする試みもあります。これには事前にトレーニングされた分類器やCLIPネットワークからの勾配を使用しますが、このアプローチは推論中に多くの計算を追加するため、モデルのサンプリングを遅くします。 では、非常に高価なプロセスを必要とせずに、既存のモデルを利用して条件を適用することはできないでしょうか?拡散モードを変更する手間のかかる時間のかかるプロセスに入る必要はありませんか?それでも条件を付けることは可能でしょうか?その答えは「はい」であり、それを紹介します。 多モーダルコンディショニングモジュールのユースケース。出典: https://arxiv.org/pdf/2302.12764.pdf 提案されたアプローチ、多モーダルコンディショニングモジュール(MCM)は、既存の拡散ネットワークに統合できるモジュールです。これは、元の拡散ネットワークの予測を各サンプリングタイムステップで調整するためにトレーニングされた小規模の拡散のようなネットワークを使用します。これにより、生成された画像が提供された条件に従うようになります。 MCMは、元の拡散モデルを何らかの方法でトレーニングする必要はありません。トレーニングは、モジュレーションネットワークに対してのみ行われ、小規模でトレーニングコストがかからないです。このアプローチは計算的に効率的であり、大規模な拡散ネットワークの勾配を計算する必要がないため、拡散ネットワークをゼロからトレーニングするか既存の拡散ネットワークを微調整するよりも少ない計算リソースを必要とします。 さらに、MCMは、トレーニングデータセットが大規模でない場合でも、一般化能力があります。勾配の計算が必要ないため、推論プロセスを遅くすることはありません。唯一の計算オーバーヘッドは、小規模な拡散ネットワークの実行によるものです。 提案されたモジュレーションパイプラインの概要。出典: https://arxiv.org/pdf/2302.12764.pdf マルチモーダル調整モジュールの組み込みにより、セグメンテーションマップやスケッチなどの追加のモダリティによる条件付き画像生成に対して、より多くの制御が加わります。このアプローチの主な貢献は、マルチモーダル調整モジュールの導入です。これは、元のモデルのパラメータを変更せずに事前学習済みの拡散モデルを条件付き画像合成に適応させるための手法であり、ゼロからのトレーニングや大規模なモデルの微調整よりも安価でメモリ使用量も少なく、高品質かつ多様な結果を実現します。 論文とプロジェクトをチェックしてください。この研究に関しては、このプロジェクトの研究者に全てのクレジットがあります。また、最新のAI研究ニュース、素晴らしいAIプロジェクトなどを共有している26k+のML SubReddit、Discordチャンネル、メールニュースレターにもぜひ参加してください。 Tensorleapの説明可能性プラットフォームでディープラーニングの秘密を解き放つ この投稿は「One Diffusion to Rule Diffusion:…

新しい技術の詳細なコース:AWS上の生成AIの基礎

「AWS上の生成AIの基礎」は、AWSやその他のプラットフォーム上で最新の基礎モデルを事前トレーニング、微調整、展開するための概念的な基礎、実践的なアドバイス、ハンズオンガイダンスを提供する新しい技術的な詳細なコースですAWS生成AIの世界的な基礎リーダーであるエミリー・ウェバーが開発し、この無料のハンズオンコースとサポートするGitHubのソースコード[...]

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us