Learn more about Search Results link - Page 44

機械学習エンジニアのためのLLMOps入門ガイド

イントロダクション OpenAIのChatGPTのリリースは、大規模言語モデル(LLM)への関心を高め、人工知能について誰もが話題にしています。しかし、それは単なる友好的な会話だけではありません。機械学習(ML)コミュニティは、LLMオプスという新しい用語を導入しました。私たちは皆、MLOpsについて聞いたことがありますが、LLMOpsとは何でしょうか。それは、これらの強力な言語モデルをライフサイクル全体で扱い管理する方法に関するものです。 LLMは、AI駆動の製品の作成と維持方法を変えつつあり、この変化が新しいツールやベストプラクティスの必要性を引き起こしています。この記事では、LLMOpsとその背景について詳しく解説します。また、LLMを使用してAI製品を構築する方法が従来のMLモデルと異なる点も調査します。さらに、これらの相違によりMLOps(機械学習オペレーション)がLLMOpsと異なる点も見ていきます。最後に、LLMOpsの世界で今後期待されるエキサイティングな展開について討論します。 学習目標: LLMOpsとその開発についての理解を深める。 例を通じてLLMOpsを使用してモデルを構築する方法を学ぶ。 LLMOpsとMLOpsの違いを知る。 LLMOpsの将来の展望を一部垣間見る。 この記事はデータサイエンスブロガソンの一環として公開されました。 LLMOpsとは何ですか? LLMOpsは、Large Language Model Operationsの略であり、MLOpsと似ていますが、特に大規模言語モデル(LLM)向けに設計されたものです。開発から展開、継続的なメンテナンスまで、LLMを活用したアプリケーションに関連するすべての要素を処理するために、新しいツールとベストプラクティスを使用する必要があります。 これをよりよく理解するために、LLMとMLOpsの意味を解説します: LLMは、人間の言語を生成できる大規模言語モデルです。それらは数十億のパラメータを持ち、数十億のテキストデータで訓練されます。 MLOps(機械学習オペレーション)は、機械学習によって動力を得るアプリケーションのライフサイクルを管理するために使用されるツールやプラクティスのセットです。 これで基本的な説明ができたので、このトピックをもっと詳しく掘り下げましょう。 LLMOpsについての話題とは何ですか? まず、BERTやGPT-2などのLLMは2018年から存在しています。しかし、ChatGPTが2022年12月にリリースされたことで、LLMOpsのアイデアにおいて著しい盛り上がりを目の当たりにするのは、ほぼ5年後のことです。 それ以来、私たちはLLMのパワーを活用したさまざまなタイプのアプリケーションを見てきました。これには、ChatGPTなどのお馴染みのチャットボットから(ChatGPTなど)、編集や要約のための個人用のライティングアシスタント(Notion AIなど)やコピーライティングのためのスキルを持ったもの(Jasperやcopy.aiなど)まで含まれます。また、コードの書き込みやデバッグのためのプログラミングアシスタント(GitHub Copilotなど)、コードのテスト(Codium AIなど)、セキュリティのトラブルの特定(Socket…

「Pythonをマスターするための無料の5冊の本」

「Pythonの基礎からクリーンアーキテクチャまで、Pythonスキルをレベルアップさせるのに役立つ無料の本を5冊紹介します」

ベスト5のRコース(2024年)

私たちは最高のRコースを見ていきますこれらのコースによって、Rプログラミングの経験を積むために必要なすべてのスキルを学ぶことができます

初めての機械学習モデルを展開する

たった3つの簡単なステップで、ガラス分類モデルを構築して展開することができます言っている間に、ガラス分類モデルと言えるほど早く!

ビジネスにおけるAIパワードのテキストメッセージングの台頭

紹介 近年、人工知能(AI)の統合、特に自然言語処理(NLP)と機械学習(ML)の発展によって、テキストベースのビジネスコミュニケーションの風景が根本的に変わりました。本記事では、AIによるテキストメッセージングの技術的な側面について詳しく探求し、基本的な概念、応用、利点、課題、そしてこの技術の将来について考察します。 学習目標 ビジネスにおけるテキストベースのコミュニケーションを変革する自然言語処理(NLP)や機械学習(ML)の役割を含む、AIによるテキストメッセージングの基本的な概念を理解する。 トークン化、固有表現認識(NER)、品詞タグ付け、教師あり学習、単語の埋め込み、リカレントニューラルネットワーク(RNN)など、AIによるテキストメッセージングシステムの技術的な要素を探求する。 カスタマーサポート、マーケティング、予約スケジュール、フィードバック分析など、さまざまな業界でのAIによるテキストメッセージングの実践的な応用に対する洞察を得る。 この記事はデータサイエンスブログマラソンの一部として公開されました。 AIによるテキストメッセージングの理解 人工知能は、私たちがテキストや対話をする方法を変えています。これらの技術的な要素は、AIによるテキストメッセージングシステムの構築要素であり、効果的なテキストベースの対話を理解、処理、生成するためのものです。会話技術の未来へのダイブとともに、AIによるテキストメッセージングの本質を見つけましょう。 トークン化 トークン化は、テキストをより小さな単位、通常は単語やトークンに分割する基本的なプロセスです。自然言語処理(NLP)やテキストメッセージングの文脈では、トークン化は重要なステップです。なぜなら、トークン化によって、連続していたり、連続性のある人間の言語をコンピュータが処理可能な離散的な単位に変換できるからです。例えば、文「The quick brown fox jumps.」をトークン化すると、[「The」、「quick」、「brown」、「fox」、「jumps」]のような個々のトークンに分割されます。 固有表現認識(NER) NERは、テキスト内の特定のエンティティや要素を識別し分類するための技術です。これらのエンティティには、人名、組織名、日付、場所などが含まれます。AIによるテキストメッセージングでは、NERはメッセージ内の異なる要素の文脈と重要性を理解するのに役立ちます。例えば、「Apple Inc. was founded on April 1, 1976, in…

ジェネラティブAIを通じた感情分析のマスタリング

イントロダクション センチメント分析は、企業が顧客のフィードバックを理解し対応する方法を革新しました。顧客のセンチメント分析は、製品レビュー、チャットの記録、メール、コールセンターでの相互作用などの顧客のフィードバックを分析し、顧客を喜んでいる、中立的な意見を持つ、または不満を持つカテゴリーに分類します。この分類は、企業が顧客満足度を向上させるために、対応や戦略を調整するのに役立ちます。本記事では、センチメント分析と生成AIの融合について探求し、両方の分野の能力向上に果たす変革的な役割を明らかにします。 学習目標: 生成AIがセンチメント分析において果たす変革的な役割と、企業が顧客のフィードバックを解釈し対応する方法への影響を理解する。 生成AIモデルの重要な要素としてのトークン化やデータ品質フィルタリングなど、データ処理技術の理解を深める。 生成AIプロジェクトのライフサイクル、プロンプトエンジニアリング、センチメント分析の最適化のための設定パラメーターなどについて洞察を得る。 GPT-3.5 Turboのデモ環境の設定とAPIキーの作成のための実践的なヒントを得る。 センチメント分析における生成AIの役割 電子商取引の時代において、顧客のフィードバックは以前よりも豊富で多様です。製品やアプリのレビューは顧客のフィードバックの一般的な形式です。しかしこれらのレビューは、さまざまな言語で書かれており、絵文字が混ざっていたり、複数の言語が混在していたりすることがあり、標準化が重要です。言語翻訳は、多様なフィードバックを共通の言語に変換するためによく使用されます。 GPT-3.5などの生成AIモデルは、センチメント分析において重要な役割を果たしています。これらは、インターネットや書籍、Webスクレイピングなどのさまざまな情報源からのテキストを含む大規模なデータセットでトレーニングされた複雑なニューラルネットワークアーキテクチャに基づいています。これらのモデルは、トークン化によってテキストデータを数値形式に変換することができます。このトークン化は、さらなる処理には不可欠です。 トークン化されたデータはノイズや関係のない情報を除去するデータ品質フィルタリングによってきれいにされます。興味深いことに、これらのモデルでは、元のトークンのごく一部しか使用されません(通常は1〜3%程度)。トークン化されたテキストは、ニューラルネットワーク内で効率的な数学演算(行列の乗算など)を可能にするためにベクトルに変換されます。 生成AIモデルは、問題の範囲を定義し、適切なベースモデル(GPT-3.5など)を選択し、このモデルを特定のデータにどのように活用するかを決定するというプロジェクトライフサイクルを活用しています。このライフサイクルには、プロンプトエンジニアリング、ファインチューニング、人間のフィードバックとの調整、モデル評価、最適化、展開、スケーリング、アプリケーションの統合などが含まれます。 生成AIプロジェクトライフサイクルの詳細 生成AIプロジェクトのライフサイクルには、いくつかの重要なステップがあります: 問題の範囲の定義:言語翻訳、テキスト要約、センチメント分析などのサブ問題に問題を分割する。 ベースモデルの選択:既存のベース言語モデルとの作業を選択するか、カスタムモデルを事前トレーニングするかを選択する。カスタムモデルの事前トレーニングは、計算上の負荷がかかる場合があります。 ベースモデルの使用:特定のデータに対してベースモデルをどのように活用するかを決定する。プロンプトエンジニアリングやファインチューニングを含むことが多いです。 人間のフィードバックとの調整:モデルのパフォーマンスと精度を向上させるために人間のフィードバックを取り入れる。 モデル評価:さまざまな指標を使用してモデルのパフォーマンスを評価する。 最適化と展開:モデルを微調整し、実稼働環境にデプロイする。 スケーリングと拡張:モデルの機能を拡張し、既存のアプリケーションと統合する。 センチメント分析におけるプロンプトエンジニアリングとファインチューニング プロンプトエンジニアリングは、センチメント分析に生成AIを使用する際の重要な要素です。これは、AIモデルに対して指示やプロンプトを提供し、要求された応答を生成させることを含みます。プロンプトエンジニアリングには、主に3つの主要なタイプがあります:…

「OpenAIキーなしでPDFおよび記事のための強力なチャットアシスタントを作成する」

イントロダクション 自然言語処理の世界は、特に大規模な言語モデルの登場により、膨大な拡大を遂げています。これらのモデルは、この分野を革新し、誰でも利用できるようにしました。この記事では、オープンソースライブラリを使用して、与えられた記事(またはPDF)を基に質問に応答できる強力なチャットアシスタントを作成するためのNLP(自然言語処理)のテクニックを探求し、実装していきます。OpenAIのAPIキーは必要ありません。 この記事は、データサイエンスブログマラソンの一環として公開されています。 ワークフロー このアプリケーションのワークフローは以下の通りです: ユーザーは、PDFファイルまたは記事のURLを提供し、質問を行います。このアプリケーションは、提供されたソースに基づいて質問に答えることを試みます。 私たちは、PYPDF2ライブラリ(PDFファイルの場合)またはBeautifulSoup(記事のURLの場合)を使用してコンテンツを抽出します。次に、langchainライブラリのCharacterTextSplitterを使用して、それをチャンクに分割します。 各チャンクに対して、all-MiniLM-L6-v2モデルを使用して、対応する単語埋め込みベクトルを計算します。このモデルは、文章や段落を384次元の密なベクトル空間にマッピングするためのものです(単語埋め込みは、単語/文章をベクトルとして表現する技術の一つです)。同じ技術がユーザーの質問にも適用されます。 これらのベクトルは、sentence_transformersというPythonのフレームワークが提供する意味的検索関数に入力されます。sentence_transformersは、最先端の文、テキスト、画像埋め込みを行うためのフレームワークです。 この関数は、答えを含む可能性があるテキストチャンクを返し、質問応答モデルは、semantic_searchとユーザーの質問の出力に基づいて最終的な答えを生成します。 注意 すべてのモデルは、HTTPリクエストのみを使用してAPI経由でアクセス可能です。 コードはPythonを使用して書かれます。 FAQ-QNは、より詳細な情報についてはFAQセクションを参照することを示すキーワードです。 実装 このセクションでは、実装についてのみに焦点を当て、詳細はFAQセクションで提供されます。 依存関係 依存関係をダウンロードし、それらをインポートすることから始めます。 pip install -r requirements.txt numpytorchsentence-transformersrequestslangchainbeautifulsoup4PyPDF2 import…

このAIニュースレターは、あなたが必要とするすべてです #66

AIの今週のトピックスでは、OpenAIが再び注目を浴びましたChatGPTに新たな音声と画像の機能を追加する計画が発表されたからですまた、LLMレースも熱を帯び続けており、Amazon...

「読むべき創造的エージェント研究論文」

見逃せないエキサイティングな分野に関する研究論文

アマゾンセージメーカーでのLlama 2のベンチマーク

大型言語モデル(LLM)や他の生成型AIモデルの展開は、計算要件とレイテンシのニーズのために課題となることがあります。Hugging Face LLM Inference Containerを使用してAmazon SageMaker上でLlama 2を展開する企業に有用な推奨事項を提供するために、Llama 2の60以上の異なる展開設定を分析した包括的なベンチマークを作成しました。 このベンチマークでは、さまざまなサイズのLlama 2をAmazon EC2インスタンスのさまざまなタイプでさまざまな負荷レベルで評価しました。私たちの目標は、レイテンシ(トークンごとのミリ秒)とスループット(秒あたりのトークン数)を測定し、次の3つの一般的なユースケースに最適な展開戦略を見つけることです: 最も費用対効果の高い展開:低コストで良好なパフォーマンスを求めるユーザー向け 最高のレイテンシ展開:リアルタイムサービスのレイテンシを最小限に抑えるための展開 最高のスループット展開:秒あたりの処理トークンを最大化するための展開 このベンチマークを公正かつ透明で再現可能なものにするために、使用したすべてのアセット、コード、データを共有しています: GitHubリポジトリ 生データ 処理済みデータのスプレッドシート 私たちは、顧客がLLMsとLlama 2を効率的かつ最適に自社のユースケースに使用できるようにしたいと考えています。ベンチマークとデータに入る前に、使用した技術と手法を見てみましょう。 Amazon SageMaker上のLlama 2のベンチマーク Hugging…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us