Learn more about Search Results Twitter - Page 43
- You may be interested
- 「AIの問題を定義する方法」
- スケールにおける言語モデリング:Gopher...
- 「AI スタートアップの資金調達 9 月 1 号...
- 新車販売が加速し、チップ不足が緩和される
- AMDの戦略的なプレイ:Nvidiaの支配に挑戦...
- 「初めてのデータサイエンスプロジェクト...
- 「生成AIにおけるLLMエージェントのデコー...
- ビジネスにおけるAIパワードのテキストメ...
- 「タンパク質設計の次は何か?マイクロソ...
- このAI論文では、大規模なマルチモーダル...
- 「エッセンシャルAI、シリーズAラウンドで...
- Essential MLOps:無料の電子書籍
- COSPとUSPの内部:GoogleがLLMsの推論を進...
- 「マイクロソフトに韻を踏む事件」
- 「Amazon SageMaker Canvasを使用したノー...
カカオブレインからの新しいViTとALIGNモデル
Kakao BrainとHugging Faceは、新しいオープンソースの画像テキストデータセットCOYO(700億ペア)と、それに基づいてトレーニングされた2つの新しいビジュアル言語モデル、ViTとALIGNをリリースすることを発表しました。ALIGNモデルが無料かつオープンソースで公開されるのは初めてであり、ViTとALIGNモデルのリリースにトレーニングデータセットが付属するのも初めてです。 Kakao BrainのViTとALIGNモデルは、オリジナルのGoogleモデルと同じアーキテクチャとハイパーパラメータに従っていますが、オープンソースのCOYOデータセットでトレーニングされています。GoogleのViTとALIGNモデルは、巨大なデータセット(ViTは3億枚の画像、ALIGNは18億の画像テキストペア)でトレーニングされていますが、データセットが公開されていないため、複製することはできません。この貢献は、データへのアクセスも含めて、視覚言語モデリングを再現したい研究者にとって特に価値があります。Kakao ViTとALIGNモデルの詳細な情報は、こちらで確認できます。 このブログでは、新しいCOYOデータセット、Kakao BrainのViTとALIGNモデル、およびそれらの使用方法について紹介します!以下が主なポイントです: 史上初のオープンソースのALIGNモデル! オープンソースのデータセットCOYOでトレーニングされた初のViTとALIGNモデル Kakao BrainのViTとALIGNモデルは、Googleのバージョンと同等のパフォーマンスを示します ViTとALIGNのデモはHFで利用可能です!選んだ画像サンプルでオンラインでViTとALIGNのデモを試すことができます! パフォーマンスの比較 Kakao BrainのリリースされたViTとALIGNモデルは、Googleが報告した内容と同等またはそれ以上のパフォーマンスを示します。Kakao BrainのALIGN-B7-Baseモデルは、トレーニングペアが少ない(700億ペア対18億ペア)にもかかわらず、Image KNN分類タスクではGoogleのALIGN-B7-Baseと同等のパフォーマンスを発揮し、MS-COCO検索の画像からテキスト、テキストから画像へのタスクではより優れた結果を示します。Kakao BrainのViT-L/16は、モデル解像度384および512でImageNetとImageNet-ReaLで評価された場合、GoogleのViT-L/16と同様のパフォーマンスを発揮します。つまり、コミュニティはKakao BrainのViTとALIGNモデルを使用して、特にトレーニングデータへのアクセスが必要な場合に、GoogleのViTとALIGNリリースを再現することができます。最先端の性能を発揮しつつ、オープンソースで透明性のあるこれらのモデルのリリースを見ることができるのはとても興奮します! COYOデータセット これらのモデルのリリースの特徴は、モデルが無料かつアクセス可能なCOYOデータセットでトレーニングされていることです。COYOは、GoogleのALIGN 1.8B画像テキストデータセットに似た700億ペアの画像テキストデータセットであり、ウェブページから取得した「ノイズのある」代替テキストと画像のペアのコレクションですが、オープンソースです。COYO-700MとALIGN 1.8Bは「ノイズのある」データセットですが、最小限のフィルタリングが適用されています。COYOは、他のオープンソースの画像テキストデータセットであるLAIONとは異なり、以下の点が異なります。…
ディフューザを使用してControlNetをトレーニングしてください
イントロダクション ControlNetは、追加の条件を付加することで拡散モデルを細かく制御することができるニューラルネットワーク構造です。この技術は、「Adding Conditional Control to Text-to-Image Diffusion Models」という論文で登場し、すぐにオープンソースの拡散コミュニティで広まりました。著者はStable Diffusion v1-5を制御するための8つの異なる条件をリリースしました。これには、ポーズ推定、深度マップ、キャニーエッジ、スケッチなどが含まれます。 このブログ投稿では、3Dシンセティックフェイスに基づいた顔のポーズモデルであるUncanny Facesモデルのトレーニング手順を詳細に説明します(実際にはUncanny Facesは予期しない結果であり、それがどのように実現されたかについては後ほどご紹介します)。 安定した拡散のためのControlNetのトレーニングの始め方 独自のControlNetをトレーニングするには、3つのステップが必要です: 条件の計画:ControlNetはStable Diffusionをさまざまなタスクに対応できる柔軟性があります。事前にトレーニングされたモデルはさまざまな条件を示しており、コミュニティはピクセル化されたカラーパレットに基づいた他の条件を作成しています。 データセットの構築:条件が決まったら、データセットの構築の時間です。そのためには、データセットをゼロから構築するか、既存のデータセットの一部を使用することができます。モデルをトレーニングするためには、データセットには3つの列が必要です:正解のimage、conditioning_image、およびprompt。 モデルのトレーニング:データセットの準備ができたら、モデルのトレーニングの時間です。これは、ディフューザーのトレーニングスクリプトのおかげで最も簡単な部分です。少なくとも8GBのVRAMを持つGPUが必要です。 1. 条件の計画 条件を計画するために、次の2つの質問を考えると役立ちます: どのような条件を使用したいですか? 既存のモデルで「通常の」画像を私の条件に変換できるものはありますか?…
テキストからビデオへのモデルの深掘り
ModelScopeで生成されたビデオサンプルです。 テキストからビデオへの変換は、生成モデルの驚くべき進歩の長いリストの中で次に来るものです。その名前の通り、テキストからビデオへの変換は、時間的にも空間的にも一貫性のある画像のシーケンスをテキストの説明から生成する、比較的新しいコンピュータビジョンのタスクです。このタスクは、テキストから画像への変換と非常によく似ているように思えるかもしれませんが、実際にははるかに難しいものです。これらのモデルはどのように動作し、テキストから画像のモデルとはどのように異なり、どのようなパフォーマンスが期待できるのでしょうか? このブログ記事では、テキストからビデオモデルの過去、現在、そして未来について論じます。まず、テキストからビデオとテキストから画像のタスクの違いを見直し、条件付きと非条件付きのビデオ生成の独特の課題について話し合います。さらに、テキストからビデオモデルの最新の開発について取り上げ、これらの方法がどのように機能し、どのような能力があるのかを探ります。最後に、Hugging Faceで取り組んでいるこれらのモデルの統合と使用を容易にするための取り組みや、Hugging Face Hub内外でのクールなデモやリソースについて話します。 さまざまなテキストの説明を入力として生成されたビデオの例、Make-a-Videoより。 テキストからビデオ対テキストから画像 最近の開発が非常に多岐にわたるため、テキストから画像の生成モデルの現在の状況を把握することは困難かもしれません。まずは簡単に振り返りましょう。 わずか2年前、最初のオープンボキャブラリ、高品質なテキストから画像の生成モデルが登場しました。VQGAN-CLIP、XMC-GAN、GauGAN2などの最初のテキストから画像のモデルは、すべてGANアーキテクチャを採用していました。これらに続いて、2021年初めにOpenAIの非常に人気のあるトランスフォーマーベースのDALL-E、2022年4月のDALL-E 2、Stable DiffusionとImagenによって牽引された新しい拡散モデルの新たな波が続きました。Stable Diffusionの大成功により、DreamStudioやRunwayML GEN-1などの多くの製品化された拡散モデルや、Midjourneyなどの既存製品との統合が実現しました。 テキストから画像生成における拡散モデルの印象的な機能にもかかわらず、拡散および非拡散ベースのテキストからビデオモデルは、生成能力においてはるかに制約があります。テキストからビデオは通常、非常に短いクリップで訓練されるため、長いビデオを生成するためには計算コストの高いスライディングウィンドウアプローチが必要です。そのため、これらのモデルは展開とスケーリングが困難であり、文脈と長さに制約があります。 テキストからビデオのタスクは、さまざまな面で独自の課題に直面しています。これらの主な課題のいくつかには以下があります: 計算上の課題:フレーム間の空間的および時間的な一貫性を確保することは、長期的な依存関係を伴い、高い計算コストを伴います。そのため、このようなモデルを訓練することは、ほとんどの研究者にとって手の届かないものです。 高品質なデータセットの不足:テキストからビデオの生成のためのマルチモーダルなデータセットは希少で、しばしばスパースに注釈が付けられているため、複雑な動きのセマンティクスを学ぶのが難しいです。 ビデオのキャプションに関する曖昧さ:モデルが学習しやすいようにビデオを記述する方法は未解決の問題です。完全なビデオの説明を提供するためには、複数の短いテキストプロンプトが必要です。生成されたビデオは、時間の経過に沿って何が起こるかを物語る一連のプロンプトやストーリーに基づいて条件付ける必要があります。 次のセクションでは、テキストからビデオへの進展のタイムラインと、これらの課題に対処するために提案されたさまざまな手法について別々に議論します。高レベルでは、テキストからビデオの作業では以下のいずれかを提案しています: 学習しやすいより高品質なデータセットの作成。 テキストとビデオのペアデータなしでこのようなモデルを訓練する方法。 より計算効率の良い方法で長く、高解像度のビデオを生成する方法。 テキストからビデオを生成する方法…
Amazon SageMakerのHugging Face LLM推論コンテナをご紹介します
これは、オープンソースのLLM(Large Language Model)であるBLOOMをAmazon SageMakerに展開し、新しいHugging Face LLM Inference Containerを使用して推論を行う方法の例です。Open Assistantデータセットで訓練されたオープンソースのチャットLLMである12B Pythia Open Assistant Modelを展開します。 この例では以下の内容をカバーしています: 開発環境のセットアップ 新しいHugging Face LLM DLCの取得 Open Assistant 12BのAmazon SageMakerへの展開 モデルを使用して推論およびチャットを行う…
Hugging Faceのパネル
私たちは、PanelとHugging Faceのコラボレーションを発表できることを喜んでいます!🎉 Hugging Face SpacesにPanelのテンプレートを統合しました。これにより、Panelアプリを簡単に構築し、Hugging Face上で簡単にデプロイすることができます。 Panelは何を提供していますか? Panelは、Pythonで強力なツール、ダッシュボード、複雑なアプリケーションを簡単に構築できるオープンソースのPythonライブラリです。PyDataエコシステム、パワフルなデータテーブルなどがすぐに利用できるようになっています。高レベルのリアクティブAPIと低レベルのコールバックベースのAPIにより、探索的なアプリケーションを素早く構築することができます。また、複雑なマルチページアプリケーションや豊富な相互作用を持つアプリケーションを構築することも制限されません。PanelはHoloVizエコシステムの一員であり、データ探索ツールの連携エコシステムへのゲートウェイです。Panelは、他のHoloVizツールと同様に、NumFocusがスポンサーとなっており、AnacondaとBlackstoneからのサポートを受けています。 以下は、私たちのユーザーが価値を見出しているPanelのいくつかの注目すべき機能です。 Panelは、Matplotlib、Seaborn、Altair、Plotly、Bokeh、PyDeck、Vizzuなど、さまざまなプロットライブラリに広範なサポートを提供しています。 すべての相互作用は、Jupyterとスタンドアロンのデプロイメントで同じように機能します。Panelは、Jupyterノートブックからダッシュボードにコンポーネントをシームレスに統合することができ、データ探索と結果の共有の間でスムーズな移行を実現します。 Panelは、複雑なマルチページアプリケーション、高度な相互作用機能、大規模データセットの可視化、リアルタイムデータのストリーミングを構築することができます。 PyodideとWebAssemblyとの統合により、PanelアプリケーションをWebブラウザでシームレスに実行することができます。 Hugging FaceでPanelアプリを構築する準備はできましたか?Hugging Faceのデプロイメントドキュメントをチェックして、このボタンをクリックして旅を始めましょう: 🌐 コミュニティに参加しましょう Panelコミュニティは活気があり、サポートが充実しており、経験豊富な開発者やデータサイエンティストが知識を共有したり、助け合ったりすることを楽しみにしています。以下の方法で参加し、私たちとつながりましょう: Discord Discourse Twitter LinkedIn Github
Open LLMのリーダーボードはどうなっていますか?
最近、Falcon 🦅のリリースおよびOpen LLM Leaderboardへの追加に関して、Twitter上で興味深い議論が起こりました。Open LLM Leaderboardは、オープンアクセスの大規模言語モデルを比較する公開のリーダーボードです。 この議論は、リーダーボードに表示されている4つの評価のうちの1つであるMassive Multitask Language Understanding(略称:MMLU)のベンチマークを中心に展開されました。 コミュニティは、リーダーボードの現在のトップモデルであるLLaMAモデル 🦙のMMLU評価値が、公開されたLLaMa論文の値よりも著しく低いことに驚きました。 そのため、私たちは何が起こっているのか、そしてそれを修正する方法を理解するために深堀りしました 🕳🐇 私たちとのこの冒険の旅において、私たちはLLaMAの評価に協力した素晴らしい@javier-m氏、そしてFalconチームの素晴らしい@slippylolo氏と話し合いました。もちろん、以下のエラーは彼らではなく、私たちに帰すべきです! この冒険の旅の中で、オンラインや論文で見る数値を信じるべきかどうか、モデルを単一の評価で評価する方法について多くのことを学ぶことができます。 準備はいいですか?それでは、シートベルトを締めましょう、出発します 🚀。 Open LLM Leaderboardとは何ですか? まず、Open LLM Leaderboardは、実際にはEleutherAI非営利AI研究所によって作成されたオープンソースのベンチマークライブラリEleuther…
Hugging Faceの推論エンドポイントを使用してLLMをデプロイする
オープンソースのLLMであるFalcon、(オープン-)LLaMA、X-Gen、StarCoder、またはRedPajamaは、ここ数ヶ月で大きく進化し、ChatGPTやGPT4などのクローズドソースのモデルと特定のユースケースで競合することができるようになりました。しかし、これらのモデルを効率的かつ最適化された方法で展開することはまだ課題です。 このブログ投稿では、モデルの展開を容易にするマネージドSaaSソリューションであるHugging Face Inference EndpointsにオープンソースのLLMを展開する方法と、応答のストリーミングとエンドポイントのパフォーマンステストの方法を紹介します。さあ、始めましょう! Falcon 40Bの展開方法 LLMエンドポイントのテスト JavaScriptとPythonでの応答のストリーミング 始める前に、Inference Endpointsについての知識をおさらいしましょう。 Hugging Face Inference Endpointsとは何ですか Hugging Face Inference Endpointsは、本番環境での機械学習モデルの展開を簡単かつ安全な方法で提供します。Inference Endpointsを使用することで、開発者やデータサイエンティストはインフラストラクチャの管理をせずにAIアプリケーションを作成できます。展開プロセスは数回のクリックで簡略化され、オートスケーリングによる大量のリクエストの処理、ゼロスケールへのスケールダウンによるインフラストラクチャのコスト削減、高度なセキュリティの提供などが可能となります。 LLM展開における最も重要な機能のいくつかは以下の通りです: 簡単な展開: インフラストラクチャやMLOpsの管理を必要とせず、本番用のAPIとしてモデルを展開できます。 コスト効率:…
Transformers.jsを使用してMLを搭載したウェブゲームの作成
このブログ記事では、ブラウザ上で完全に動作するリアルタイムのMLパワードWebゲーム「Doodle Dash」を作成した方法を紹介します(Transformers.jsのおかげで)。このチュートリアルの目的は、自分自身でMLパワードのWebゲームを作成するのがどれだけ簡単かを示すことです… ちょうどOpen Source AI Game Jam(2023年7月7日-9日)に間に合います。まだ参加していない場合は、ぜひゲームジャムに参加してください! ビデオ:Doodle Dashデモビデオ クイックリンク デモ:Doodle Dash ソースコード:doodle-dash ゲームジャムに参加:Open Source AI Game Jam 概要 始める前に、作成する内容について話しましょう。このゲームは、GoogleのQuick, Draw!ゲームに触発されており、単語とニューラルネットワークが20秒以内にあなたが描いているものを推測するというものです(6回繰り返し)。実際には、彼らのトレーニングデータを使用して独自のスケッチ検出モデルを訓練します!オープンソースは最高ですよね? 😍 このバージョンでは、1つのプロンプトずつできるだけ多くのアイテムを1分間で描くことができます。モデルが正しいラベルを予測した場合、キャンバスがクリアされ、新しい単語が与えられます。タイマーが切れるまでこれを続けてください!ゲームはブラウザ内でローカルに実行されるため、サーバーの遅延について心配する必要はありません。モデルはあなたが描くと同時にリアルタイムの予測を行うことができます… 🤯…
Pythonを使った感情分析(Sentiment Analysis)のFlair
シリーズ記事の次のブログへようこそ!今日は、感情分析のためのPythonライブラリで使用される方法の1つであるFlairを探求しますFlairは、NLP(自然言語処理)ライブラリです...
データサイエンスの求人探し:就職への道を導いてくれた5冊の本
大変だとわかっています!この困難な時期において、私たちは大きな苦難に直面していることは否定できませんCNNの2023年の解雇追跡データは、現在の状況を鮮明に示しています...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.