Learn more about Search Results CPU - Page 43
- You may be interested
- CarperAIは、コードと自然言語の両方で進...
- 「DIRFAは、オーディオクリップをリアルな...
- 「脳のように機能するコンピュータビジョ...
- OpenCVを使用したカメラキャリブレーション
- 「アノテーターのように考える:データセ...
- メタAIのもう一つの革命的な大規模モデル ...
- 事例研究:Hugging Face Infinityとモダン...
- DataHour ChatGPTの幻視を80%減らす
- 深さ優先探索(DFS)アルゴリズム:グラフ...
- 安定した拡散:インテリアデザインの芸術...
- 「ハッキングされたミツバチがAIを巣に近...
- 「ノーコードアプリビルダーのトップ10(2...
- ランダムフォレストの解釈
- Rendered.aiは、合成データの生成にNVIDIA...
- このAI論文は、大規模な言語モデルを最適...
RAPIDS:簡単にMLモデルを加速するためにGPUを使用する
はじめに 人工知能(AI)がますます成長するにつれて、より高速かつ効率的な計算能力の需要が高まっています。機械学習(ML)モデルは計算量が多く、モデルのトレーニングには時間がかかることがあります。しかし、GPUの並列処理能力を使用することで、トレーニングプロセスを大幅に加速することができます。データサイエンティストはより速く反復し、より多くのモデルで実験し、より短い時間でより良い性能のモデルを構築することができます。 使用できるライブラリはいくつかあります。今日は、GPUの知識がなくてもMLモデルの加速化にGPUを使用する簡単な解決策であるRAPIDSについて学びます。 学習目標 この記事では、以下のことについて学びます: RAPIDS.aiの概要 RAPIDS.aiに含まれるライブラリ これらのライブラリの使用方法 インストールとシステム要件 この記事は、Data Science Blogathonの一部として公開されました。 RAPIDS.AI RAPIDSは、GPU上で完全にデータサイエンスパイプラインを実行するためのオープンソースのソフトウェアライブラリとAPIのスイートです。RAPIDSは、最も人気のあるPyDataライブラリと一致する使い慣れたAPIを持ちながら、優れたパフォーマンスと速度を提供します。これは、NVIDIA CUDAとApache Arrowで開発されており、その非凡なパフォーマンスの理由です。 RAPIDS.AIはどのように動作するのですか? RAPIDSは、GPUを使用した機械学習を利用してデータサイエンスおよび分析ワークフローのスピードを向上させます。GPU最適化されたコアデータフレームを持っており、データベースと機械学習アプリケーションの構築を支援し、Pythonに似た設計となっています。RAPIDSは、データサイエンスパイプラインを完全にGPU上で実行するためのライブラリのコレクションを提供します。これは、2017年にGPU Open Analytics Initiative(GoAI)と機械学習コミュニティのパートナーによって作成され、Apache Arrowのカラムメモリプラットフォームに基づいたGPUデータフレームを使用して、エンドツーエンドのデータサイエンスおよび分析ワークフローをGPU上で加速するためのものです。RAPIDSには、機械学習アルゴリズムと統合されるDataframe APIも含まれています。 データの移動量を減らした高速データアクセス…
Amazon SageMaker Jumpstartを使用して、車両フリートの故障確率を予測します
予測保全は自動車産業において重要ですなぜなら、突発的な機械故障や運用を妨げる事後処理の活動を回避することができるからです車両の故障を予測し、メンテナンスや修理のスケジュールを立てることにより、ダウンタイムを減少させ、安全性を向上させ、生産性を向上させることができますもし、車両の故障を引き起こす一般的な領域にディープラーニングの技術を適用できたら、どうでしょうか
天候の変化:AI、高速計算がより速く、効率的な予測を提供することを約束します
2050年までに、極端な天候や気候の頻度と厳しさが増すことにより、ミュンヘン再保険会社によれば、年間100万人の命が失われ、1.7兆ドルの経済損失が発生する可能性があります。 これは、吹雪、ハリケーン、熱波などの厳しい天候の発生増加と共に、正確な天気予報の必要性を強調しています。AIと高速計算は、この問題に対処するための手段として期待されています。 180以上の気象予測モデリングセンターでは、伝統的な数値天気予測(NWP)モデルを処理するために、頑健なハイパフォーマンスコンピューティング(HPC)インフラストラクチャが使用されています。これには、ヨーロッパ中期天気予報センター(ECMWF)が使用する983,040のCPUコアや、英国の気象庁のスーパーコンピュータが使用する150万以上のCPUコアと2.7メガワットの電力が含まれます。 HPC設計の再考 エネルギー効率に向けた世界的な取り組みは、HPCシステムの設計を再考するよう促しています。GPUのパワーを利用した加速計算は、計算速度を高速化するエネルギー効率の高い代替手段として有望です。 左側は、Intel Broadwell CPUsを使用したECMWF統合予測システム51メンバーアンサンブルに基づく結果であり、右側は、4x NVIDIA A100 Tensor Core GPUsを使用したFourCastNet 1,000メンバーアンサンブルに基づく結果です。同じ予測ワークロードを実行する10のモデリングセンターを想定しています。CPU: 2x AMD Milan. GPU: 4x NVIDIA H100 Tensor Core PCIe.…
NVIDIAのCEO、ヨーロッパの生成AIエグゼクティブが成功の鍵を議論
3つの主要なヨーロッパの生成AIスタートアップが、NVIDIAの創設者兼CEOのジェンソン・ホアンと一緒に新しいコンピューティングの時代について話し合いました。 500人以上の開発者、研究者、起業家、経営者が、ベルリンのスピンドラー・アンド・クラットというスタイリッシュな河畔の集会場に詰めかけました。 ホアンは、月曜日に気候科学に焦点を当てた国際協力体であるEarth Virtualization Engines(EVE)のベルリンサミットで発表したメッセージに触れながら、受け入れ会を始めました。ホアンは、NVIDIAのEarth-2イニシアチブの詳細や、加速された計算、AIによるシミュレーション、インタラクティブなデジタルツインが気候科学の研究を推進していることについて共有しました。 3つのスタートアップの創始者とのファイアサイドチャットに座る前に、ホアンはオーディエンスに「特別なゲスト」を紹介しました。彼は、地球を救う「無名のヒーロー」と呼ばれる世界有数の気候モデリング科学者4人を紹介しました。 ホアンは「これらの科学者は、気候科学の進歩にキャリアを捧げています」と述べました。「EVEのビジョンによって、彼らは気候科学の新たな時代の設計者です。」 強力な力に立ち向かう ホアンは「ドイツには膨大な数のAIスタートアップがあり、それを見ることができて嬉しいです」と述べました。「あなたはまったく新しいコンピューティングの時代にいます。それが起こると、みんなが同じスタートラインに立つことになります。」 ホアンは、Blackshark.ai、Magic、DeepLの創業者をステージに招待しました。これらのスタートアップは生成AIを活用して地球管理、人工一般知能(AGI)、言語翻訳などの方法を追求しています。 Blackshark.aiは、AIと分散空間計算を用いて2D画像をデータ豊かな3D世界に変換します。 Magicは、小規模なチームがコードをより速く、より安価に書くことを可能にするAGIソフトウェアエンジニアを開発しています。 DeepLは、AIを活用した翻訳ツールによって、すべてのものが互いにコミュニケーションできるようにすることを目指しています。 これら3社は、確立された企業の製品に対抗すると見なされる解決策を提供しています。 500人以上のオーディエンスがファイアサイドチャットに参加しました。 「なぜそんな強力な力に立ち向かったのですか?」ホアンは創業者に尋ねました。 Blacksharkの共同創設者兼CEOであるMichael Putzは、同社の製品はGoogle Earthで見ることができるものに似ていると説明しました。 しかし、Blacksharkは、Google Earthの20%に比べて、地球のカバレッジが100%であると主張しています。また、Googleが地図の一部を更新するのに数か月かかるのに対し、Blacksharkはわずか3日しか必要ありません、とPutz氏は述べました。 Magicの共同創設者兼CEOであるEric Steinbergerは、自社が人間のチームのように動作するAGI AIソフトウェアエンジニアを構築しようとしていると説明しました。…
PythonのAsyncioをAiomultiprocessで強化しましょう:包括的なガイド
Python asyncioをaiomultiprocessでどのように強化するかをこの包括的なガイドで発見してください非同期プログラミングとマルチプロセッシングの力を利用して、アプリケーションを高速化し効率を向上させる方法を学びましょう
ウェブと組み込みシステムにおけるRustの実行のための9つのルール
ユーザーの要求に応じて、私は最近、range-set-blazeというクレートをWebページ内で動作するように変換しましたまた、マイクロコントローラー(組み込み)でも動作するようにしました(range-set-blazeクレートは効率的に操作を行います...
次元をパンプアップせよ:DreamEditorは、テキストプロンプトを使って3Dシーンを編集するAIモデルです
最近、3Dコンピュータビジョンの領域はNeRFで溢れていました。それらは画期的な技術として登場し、シーンの新しいビューの再構築と合成を可能にしました。NeRFは、複数の視点画像のコレクションから基礎となるジオメトリと外観情報をキャプチャしモデル化します。 NeRFはニューラルネットワークを活用することで、従来の方法を超えるデータ駆動型のアプローチを提供します。NeRF内のニューラルネットワークは、シーンのジオメトリ、照明、ビュー依存の外観との複雑な関係を表現することを学び、高精細かつリアルなシーンの再構築を可能にします。NeRFの主な利点は、元の画像セットでキャプチャされていない領域を含め、シーン内の任意の視点から写真のようなリアルな画像を生成できる能力にあります。 NeRFの成功は、コンピュータグラフィックス、仮想現実、拡張現実において新たな可能性を切り開き、現実世界のシーンに近い没入型でインタラクティブな仮想環境の作成を可能にしました。そのため、NeRFをさらに進化させるための領域内での真剣な関心が存在します。 NeRFのいくつかの欠点は、現実世界のシナリオでの適用範囲を制限しています。たとえば、ニューラルフィールドの編集は、高次元のニューラルネットワーク特徴内での形状とテクスチャ情報の暗黙の符号化により、大きな課題となります。一部の方法では、この問題に取り組むために探索的な編集技術を使用しましたが、これらは広範なユーザーの入力を必要とし、正確で高品質な結果を得るのに苦労します。 NeRFの編集可能性は、現実世界のアプリケーションに新たな可能性を開くことができます。しかし、今までの試みは問題を解決するには十分に良い結果ではありませんでした。しかし、私たちには新しいプレーヤーが登場しました。その名はDreamEditorです。 DreamEditorは3D NeRFの編集を可能にします。出典:https://arxiv.org/pdf/2306.13455.pdf DreamEditorは、テキストのプロンプトを使用して直感的かつ便利なニューラルフィールドの変更を可能にするユーザーフレンドリーなフレームワークです。メッシュベースのニューラルフィールドを使用してシーンを表現し、ステップバイステップの編集フレームワークを採用することで、再テクスチャリング、オブジェクトの置換、オブジェクトの挿入など、さまざまな編集効果を実現します。 メッシュ表現は、2Dの編集マスクを3Dの編集領域に変換することで、正確なローカル編集を容易にします。また、ジオメトリとテクスチャを分離することにより、過度な変形を防ぎます。ステップバイステップのフレームワークは、事前に学習された拡散モデルとスコア蒸留サンプリングを組み合わせることで、簡単なテキストのプロンプトに基づいた効率的かつ正確な編集を可能にします。 DreamEditorの概要。出典:https://arxiv.org/pdf/2306.13455.pdf DreamEditorは、直感的かつ正確なテキストによる3Dシーンの編集を容易にするために、3つの主要なステージを追います。最初のステージでは、元のニューラル放射フィールドをメッシュベースのニューラルフィールドに変換します。このメッシュ表現は、空間的に選択的な編集を可能にします。変換後、特定のシーンで訓練されたカスタマイズされたテキストから画像へ(T2I)モデルを使用します。このモデルはテキストのプロンプトとシーンの視覚的コンテンツとの間の意味関係を捉えます。最後に、編集された変更はT2I拡散モードを使用してニューラルフィールド内のターゲットオブジェクトに適用されます。 DreamEditor は高い忠実度とリアリズムを保ちながら、3Dシーンを正確かつ進行的に編集することができます。メッシュベースの表現から正確な位置特定、拡散モデルを介した制御された編集まで、段階的なアプローチによって、DreamEditor は関連性のない領域での不必要な変更を最小限に抑えながら、非常にリアルな編集結果を実現することができます。
生成AI:世界はどこに向かっているのか?
はじめに テクノロジーの絶え間ない進化の世界で、AI製品の開発と展開が急速に拡大していることを目撃しています。過去6か月間、大手のテック企業や野心的なスタートアップ企業が人工知能の分野で大きな進展を遂げてきました。マイクロソフトやOpenAIなどの企業が注目を集めている一方で、彼らは氷山の一角に過ぎないことを認識することが重要です。 急速に成長しているエンタープライズAI産業で競争力を維持するために、事業は常に革新し、新たな可能性を探求しています。そのような戦略の一つは、他社との協力や非組織的な成長です。業界内の他の企業の専門知識とリソースを活用することで、事業は顧客向けに優れた製品やサービスを開発することができます。さらに、これらのパートナーシップは新たな市場や以前にアクセスできなかった機会を開くものです。合併、買収、そしてパートナーシップは、新しい技術、人材、顧客基盤へのアクセスを提供し、事業が提供するオファリングを拡大し、収益の多様化を図ることを可能にします。 私の観点から見ると、現在のAIの進化サイクルは3つの異なるフェーズに分けることができます。それぞれが成長と進歩を推進しています。 あらゆる技術の成長フェーズ あらゆる技術は成長の初期段階、成熟期、時代遅れの3つのフェーズを経ます。 出現:このフェーズでは、新しい技術が出現し注目を集めます。始まりは少数の先駆的な個人や組織が概念の探求と開発を行うことから始まることが多いです。このフェーズでは、応用が限定的で広範な認識や採用がないことがあります。主な焦点は研究、実験、概念の証明にあります。 成長と拡大:技術が実力を示し、その可能性を証明すると、成長と拡大のフェーズに入ります。開発により、機能性、効率性、使いやすさが向上します。公共および私的セクターからの投資の増加が進歩を推進する重要な役割を果たします。このフェーズでは、技術がより広範に受け入れられ、多くの企業が市場に参入し、消費者が採用し始めます。革新と競争が活気づき、急速な進展と改善が生まれます。このフェーズはまた、協力や戦略的パートナーシップを引き起こします。 成熟と統合:成熟フェーズでは、技術は業界や社会の確立された一部となります。成長率が安定し、進歩が革命的ではなく漸進的になるポイントに達します。技術は人々の生活や既存のシステムに深く統合されています。このフェーズでは優勝者が出始めます。標準化、最適化、相互運用性はこのフェーズで重要な焦点となります。重要なブレークスルーはまだ発生するかもしれませんが、初期のステージと比べると頻度は低くなります。 では、技術としての生成AIが進化のどの段階にあるのか見ていきましょう。これらのフェーズを1つずつ探っていきましょう。 詳細はこちら: 生成AI: 定義、ツール、モデル、利点など フェーズ1: 出現 – 新たなAIの時代の幕開け 最近、AIは前例のない出現のフェーズを経験しています。また、重要な製品の導入と新たな時代の幕開けを特徴としています。特に、GPT-3(Generative Pre-trained Transformer 3)の導入は、この変革を促進する上で重要な役割を果たしています。その結果、ベンチャーキャピタルの投資がAIの景気づけに注ぎ込まれ、数多くのスタートアップ企業が資金調達を行い、画期的なAI製品を開発するためにAI競争に参加しています。フェーズ1は進行中のプロセスであり、少なくともさらなる6-12か月間は続くと予想されています。 この初期フェーズでは、業界の革新者がチャンスを掴み、前進することが予想されます。OpenAIとマイクロソフトの協力が注目すべき例です。彼らの成功は、裏方で技術を磨くための膨大な努力と熱意に帰することができます。これらの組織は、この変革期にAIが提供する可能性を受け入れる者に待ち受ける潜在的な報酬の見本です。 フェーズ1で達成された重要なマイルストーンについて詳しく知るには、次の注目すべき発表を参照してください。 これらのマイルストーンは、この分野で行われた画期的な進展を証明し、AI革命の勢いが止まることのない未来が訪れる舞台を設定しています。…
AI、デジタルツインが次世代の気候研究イノベーションを解き放つ
AIと高速計算は、気候研究者が気候研究のブレークスルーを達成するために必要な奇跡を実現するのに役立つだろう、とNVIDIAの創設者兼CEOであるJensen Huangは、ベルリンサミットの基調講演で述べました。このイベントはEarth Virtualization Enginesイニシアチブの一環です。 「リチャード・ファインマンはかつて『自分が作れないものは理解していない』と言いましたが、それが気候モデリングが非常に重要な理由です」とHuangは、ベルリンのハルナックハウスで開催されたこのイベントの参加者180人に語りました。ハルナックハウスは、地域の科学者や研究者のコミュニティの集まり場として知られています。 「そして、あなたが行っている仕事は、政策立案者や研究者、産業界にとって非常に重要です」と彼は付け加えました。 この仕事を進めるために、ベルリンサミットは世界中の参加者を集め、気候予測のためにAIと高性能コンピューティングを活用します。 Huangは、気候研究者が目標を達成するために必要な3つの奇跡と、NVIDIAが気候研究者や政策立案者と協力するためのEarth-2の取り組みについて話しました。 最初に必要な奇跡は、気候を十分な解像度で、例えば数平方キロメートルのオーダーで、十分に高速にシミュレーションすることです。 2番目に必要な奇跡は、膨大な量のデータを事前に計算する能力です。 3番目は、NVIDIA Omniverseを使用してこのデータを対話的に可視化し、「政策立案者、企業、研究者の手に提供する」能力です。 気候と気象のイノベーションの次の波 Earth Virtualization Enginesイニシアチブ(EVE)は、気候科学、HPC、AIに焦点を当てた国際的な共同研究であり、初めて持続可能な地球管理のためにキロメートルスケールの気候情報を簡単に利用できるようにすることを目指しています。 「Earth-2とEVEが完璧なタイミングで出会った理由は、Earth-2が3つの基本的なブレークスルーに基づいていたからです」とHuangは述べました。 このイニシアチブは、2.5kmの解像度で調整された気候予測を提唱し、進歩のペースを加速することを約束しています。これは非常に困難な課題ですが、過去25年間のさまざまな進歩を基盤にしています。 ICON、IFS、NEMO、MPAS、WRF-Gなど、さまざまなアプリケーションがすでに高速計算を活用しており、このようなアプリケーション向けのさらなる計算能力が提供されています。 NVIDIA GH200 Grace Hopper Superchipは、巨大なAIとHPCアプリケーション向けに特別に設計された画期的な加速CPUです。これにより、テラバイトのデータを処理するアプリケーションのパフォーマンスが最大10倍向上します。…
Field Programmable Gate Array(FPGA)とは何ですか:人工知能(AI)におけるFPGA vs. GPU
フィールドプログラマブルゲートアレイ(FPGA)は、製造後に設定とカスタマイズが可能な集積回路です。これらのチップはこの能力によって「フィールドプログラマブル」と呼ばれます。プログラム可能なロジックブロックから構成され、幅広い機能を実行したり、論理ゲートとして機能したりすることができます。これにより、回路の動作方法に対してユーザーに大きな柔軟性が提供されます。 フィールドプログラマブルゲートアレイ(FPGA)は、設定可能なロジックブロック(CLB)とプログラマブルなインターコネクトで構成される半導体デバイスです。これらのブロックは、シンプルから複雑な操作を行い、フリップフロップやメモリブロックなどのメモリコンポーネントを含むことができます。 FPGAは、プログラマブルな読み取り専用メモリチップと似ていますが、より多くのゲートを収容し、ASIC(特定のタスク用に設計された集積回路)とは異なり再プログラム可能です。これらは特定の用途に合わせてマイクロプロセッサをカスタマイズするために使用され、ワイヤレス通信、データセンター、自動車、医療、航空宇宙など、さまざまな業界で人気があります。FPGAの再プログラム可能な性質により、必要に応じて柔軟性とデザインの更新が可能になります。 出典: https://allaboutfpga.com/fpga-architecture/ 出典: https://blog.samtec.com/post/new-intel-fpga-platform-features-samtec-interconnect/ FPGAの応用 FPGAは、さまざまな業界で利用され、多様な実装領域があります。主な利用領域のいくつかは以下の通りです。 エネルギー産業 FPGAは、効率的な電力ネットワークが最適な運用のために必要な送電および配電(T&D)変電所などのスマート電力網技術において、パフォーマンスとスケーラビリティを向上させながら消費電力を低減する重要な役割を果たすことができます。 向上した自動車体験 MicrosemiのFPGAは、クルーズコントロール、死角警告、衝突回避などの新しい自動車の安全アプリケーションをOEM(自動車メーカー)およびサプライヤーが作成することを可能にします。これらのFPGAは、情報保証、改ざん防止、ハードウェアセキュリティなどのサイバーセキュリティ機能、エラーコレクションメモリや低静的電力などの信頼性機能を提供します。 航空宇宙と防衛 産業用製造会社は、パフォーマンス、信頼性、寿命要件を満たすために、しばしば宇宙グレードのラジエーションハードおよびラジエーショントレラントなFPGAを提供しています。これらのFPGAは、従来のASIC実装よりも柔軟性があり、処理集約型の宇宙システムに特に適しています。 コンピュータビジョンシステム 現代の世界では、ビデオ監視カメラ、ロボット、およびその他のデバイスなど、さまざまなガジェットでコンピュータビジョンシステムが広く使用されています。これらのガジェットが位置、周囲、および顔認識の能力に基づいて適切に人と対話するためには、しばしばFPGAベースのシステムを使用する必要があります。 データセンター インターネット・オブ・シングスとビッグデータは、取得および処理されるデータ量の著しい増加をもたらしています。深層学習技術の使用により、低遅延、柔軟性、および安全な計算能力が求められます。スペースコストの上昇により、より多くのサーバーを追加してもこの需要には応えられません。FPGAは、処理の高速化、設計の柔軟性、ソフトウェアの脆弱性に対するハードウェアベースのセキュリティの面でデータセンターでの受け入れが増えています。 リアルタイムシステム 従来のCPUは応答時間が予測困難であり、トリガーが正確に発火するタイミングを予測するのが困難なため、応答時間が重要なリアルタイムシステムでFPGAが使用されています。 ASICの設計 回路のアーキテクチャを作成することが最初のステップであり、それからFPGAを使用してプロトタイプを構築し、テストすることでエラーを修正することができます。プロトタイプが予想通りの動作をすると、ASICプロジェクトが開発されます。このアプローチにより、統合回路の作成は手間がかかり複雑な作業であるため、時間を節約することができます。 FPGAベースのアクセラレーションサービス…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.