Learn more about Search Results Amazon SageMaker - Page 42

「ソフトウェア開発におけるAIの活用:ソリューション戦略と実装」

この記事では、プロセス、ツールの選択、課題の克服について触れながら、ソフトウェア開発にAIをシームレスに統合するための包括的なガイドを提供しています

AWSのエミリー・ウェバーによる大規模言語モデルの事前学習について

データサイエンスの中で新しい分野が出現し、その研究はまだ理解しにくい場合、時にはその分野の専門家や先駆者と話すことが最善です最近、私たちはAWSの主任機械学習専門ソリューションアーキテクトであるエミリー・ウェバーと話しました彼女は「Pretrain Vision and Large...」の著者です

「IoTエッジデバイスのためのクラウドベースのAI/MLサービスの探索」

AIとMLは、自動運転車、ウェブ検索、音声認識などの進歩を可能にしましたIoTデバイスのAIとMLの探求に興味がある場合、お手伝いできます

24GBのコンシューマーGPUでRLHFを使用して20B LLMを微調整する

私たちは、trlとpeftの統合を正式にリリースし、Reinforcement Learningを用いたLarge Language Model (LLM)のファインチューニングを誰でも簡単に利用できるようにしました!この投稿では、既存のファインチューニング手法と競合する代替手法である理由を説明します。 peftは一般的なツールであり、多くのMLユースケースに適用できますが、特にメモリを多く必要とするRLHFにとって興味深いです! コードに直接深く入りたい場合は、TRLのドキュメンテーションページで直接例のスクリプトをチェックしてください。 イントロダクション LLMとRLHF 言語モデルとRLHF(Reinforcement Learning with Human Feedback)を組み合わせることは、ChatGPTなどの非常に強力なAIシステムを構築するための次の手段として注目されています。 RLHFを用いた言語モデルのトレーニングは、通常以下の3つのステップを含みます: 1- 特定のドメインまたは命令のコーパスで事前学習されたLLMをファインチューニングする 2- 人間によって注釈付けされたデータセットを収集し、報酬モデルをトレーニングする 3- ステップ1で得られたLLMを報酬モデルとデータセットを用いてRL(例:PPO)でさらにファインチューニングする ここで、ベースとなるLLMの選択は非常に重要です。現時点では、多くのタスクに直接使用できる「最も優れた」オープンソースのLLMは、命令にファインチューニングされたLLMです。有名なモデルとしては、BLOOMZ、Flan-T5、Flan-UL2、OPT-IMLなどがあります。これらのモデルの欠点は、そのサイズです。まともなモデルを得るには、少なくとも10B+スケールのモデルを使用する必要がありますが、モデルを単一のGPUデバイスに合わせるだけでも40GBのGPUメモリが必要です。 TRLとは何ですか? trlライブラリは、カスタムデータセットとトレーニングセットアップを使用して、誰でも簡単に自分のLMをRLでファインチューニングできるようにすることを目指しています。他の多くのアプリケーションの中で、このアルゴリズムを使用して、ポジティブな映画のレビューを生成するモデルをファインチューニングしたり、制御された生成を行ったり、モデルをより毒性のないものにしたりすることができます。…

リアルワールドのMLOpsの例:Brainlyでのビジュアル検索のためのエンドツーエンドのMLOpsパイプライン

シリーズ「実世界のMLOpsの例」の第2回目では、Brainlyの機械学習エンジニアであるPaweł Pęczekが、Brainlyのビジュアル検索チームにおけるエンドツーエンドの機械学習オペレーション(MLOps)プロセスを詳しく説明しますそして、MLOpsで成功するためには、技術やプロセスだけではなく、さらに詳細な情報を共有します Enjoy...

SalesforceのLive Call Analyticsによる統合でエージェントの生産性を向上させる

コンタクトセンターエージェントとして、生産的な顧客との会話に集中することが好きですか?それとも、さまざまなシステムに存在する顧客情報や知識記事を調べることによって気を散らされますか?私たちは皆、そういう経験をしたことがありますマルチタスクをしながら生産的な会話をすることは難しいです1つのネガティブな経験は、[...]に傷をつける可能性があります

現代のデータエンジニアリングにおいてMAGE:効率的なデータ処理を可能にする

イントロダクション 今日のデータ駆動型の世界では、あらゆる業界の組織が膨大なデータ、複雑なパイプライン、そして効率的なデータ処理の必要性に直面しています。Apache Airflowなどの従来のデータエンジニアリングソリューションは、これらの困難に対処するためにデータ操作をオーケストレーションし、制御することで重要な役割を果たしてきました。しかし、技術の急速な進化により、データエンジニアリングの景観を再構築するMageという新しい競合者が登場しました。 学習目標 第3者のデータをシームレスに統合および同期化すること 変換のためのPython、SQL、およびRによるリアルタイムおよびバッチパイプラインの構築 データ検証で再利用可能かつテスト可能なモジュラーコード 寝ている間に複数のパイプラインを実行、監視、およびオーケストレーションすること クラウド上で協働し、Gitとバージョン管理を行い、利用可能な共有ステージング環境を待つことなくパイプラインをテストすること Terraformテンプレートを介してAWS、GCP、およびAzureなどのクラウドプロバイダーでの高速な展開 データウェアハウスで非常に大きなデータセットを直接変換するか、Sparkとのネイティブ統合を介して変換すること 直感的なUIを介して組み込みの監視、アラート、および観測性 まるで腕木式に簡単でしょうか?それならMageを絶対に試してみるべきです! この記事では、Mageの機能と機能性について説明し、これまでに学んだことやそれを使用して構築した最初のパイプラインを強調します。 この記事はData Science Blogathonの一部として公開されました。 Mageとは何ですか? Mageは、AIによって駆動され、機械学習モデル上に構築された現代的なデータオーケストレーションツールであり、かつてないほどのデータエンジニアリングプロセスを効率化し最適化することを目的としています。これは、データ変換と統合のための効果的でありながら簡単なオープンソースデータパイプラインツールであり、Airflowのような確立されたツールに対して強力な代替手段となる可能性があります。自動化と知能の力を組み合わせることで、Mageはデータ処理ワークフローを革新し、データの取り扱いと処理の方法を変革しています。Mageは、その無比の機能と使いやすいインターフェイスにより、これまでにないデータエンジニアリングプロセスの簡素化と最適化を目指しています。 ステップ1:クイックインストール Mageは、Docker、pip、およびcondaコマンドを使用してインストールでき、またはクラウドサービス上で仮想マシンとしてホストできます。 Dockerを使用する #Dockerを使用してMageをインストールするコマンドライン >docker…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us