Learn more about Search Results ローン - Page 42
- You may be interested
- このAI論文は、デュアル1-Dヒートマップを...
- 「責任あるAI:AI利用の暗い側面を回避す...
- 「ベストを学ぶ – 必読のテック企業...
- 推測的なサンプリング—直感的かつ徹底的に...
- 「データオデッセイの航海:2023年のトッ...
- GoogleがACL 2023に参加します
- 「金融ソフトウェア開発の世界:財務ソリ...
- 「二つの頭を持つ分類器の使用例」
- 「ニューラルネットワークとディープラー...
- 「OpenAIとMetaが著作権侵害で訴えられる」
- CPR-CoachによるCPRトレーニングの革命:...
- 「パーソナリティをピクセルにもたらす、I...
- NLPの就職面接をマスターする
- 「3つの医療機関が生成型AIを使用している...
- 言語モデルを使用したドキュメントの自動...
Transformers.jsを使用してMLを搭載したウェブゲームの作成
このブログ記事では、ブラウザ上で完全に動作するリアルタイムのMLパワードWebゲーム「Doodle Dash」を作成した方法を紹介します(Transformers.jsのおかげで)。このチュートリアルの目的は、自分自身でMLパワードのWebゲームを作成するのがどれだけ簡単かを示すことです… ちょうどOpen Source AI Game Jam(2023年7月7日-9日)に間に合います。まだ参加していない場合は、ぜひゲームジャムに参加してください! ビデオ:Doodle Dashデモビデオ クイックリンク デモ:Doodle Dash ソースコード:doodle-dash ゲームジャムに参加:Open Source AI Game Jam 概要 始める前に、作成する内容について話しましょう。このゲームは、GoogleのQuick, Draw!ゲームに触発されており、単語とニューラルネットワークが20秒以内にあなたが描いているものを推測するというものです(6回繰り返し)。実際には、彼らのトレーニングデータを使用して独自のスケッチ検出モデルを訓練します!オープンソースは最高ですよね? 😍 このバージョンでは、1つのプロンプトずつできるだけ多くのアイテムを1分間で描くことができます。モデルが正しいラベルを予測した場合、キャンバスがクリアされ、新しい単語が与えられます。タイマーが切れるまでこれを続けてください!ゲームはブラウザ内でローカルに実行されるため、サーバーの遅延について心配する必要はありません。モデルはあなたが描くと同時にリアルタイムの予測を行うことができます… 🤯…
将来のアプリケーションを支える大規模言語モデル(LLM)の力
生成AI、特にその言語フレーバーであるChatGPTはどこでも見かけます大規模言語モデル(LLM)の技術は、将来のアプリケーションの開発において重要な役割を果たすでしょうLLMは、数兆行に及ぶパブリックドメインのテキストに対する基礎モデルの詳細な事前トレーニングによって、言語理解に非常に優れています
2023年7月のMac向けの最高のデータ復旧ツール10選
データの損失は、個人の写真から重要なビジネス文書まで、重要なファイルをコンピュータに頼っている人にとっては悪夢のようなものです幸いなことに、Macユーザー向けには、失われたファイルや誤って削除されたファイルを取り戻すのに役立つさまざまなデータ復旧ツールが利用可能ですこの記事では、10個のツールを紹介します
GPT-3がMLOpsの将来に与える意味とは?デビッド・ハーシーと共に
この記事は元々MLOps Liveのエピソードであり、ML実践者が他のML実践者からの質問に答えるインタラクティブなQ&Aセッションです各エピソードは特定のMLトピックに焦点を当てており、このエピソードではGPT-3とMLOpsの特徴についてDavid Hersheyと話しましたYouTubeで視聴することができます Or...
高度なグラフニューラルネットワークを使用した交通予測
Googleと提携することで、DeepMindはAIの恩恵を世界中の数十億の人々にもたらすことができます言語障害を持つユーザーが元の声を取り戻すことから、ユーザーが個別のアプリを発見する手助けまで、私たちはGoogleのスケールで画期的な研究を即座に現実の問題に適用することができます今日、私たちは最新のパートナーシップの結果を共有できることを喜んでお知らせしますこれにより、Google Mapsを利用する10億人以上に真にグローバルな影響をもたらします
YouTubeと協力しています
YouTubeの体験向上のために、私たちのAI研究を活用しています私たちの研究によって人々の生活を豊かにすることを支援し、Alphabetの企業と提携して、私たちの技術を日々数十億人が利用する製品やサービスの改善に活かしています
学習トランスフォーマーコード入門:パート1 – セットアップ
あなたについてはわかりませんが、コードを見ることの方が論文を読むよりも簡単なことがありますAdventureGPTに取り組んでいた時、まずはReActの実装であるBabyAGIのソースコードを読むことから始めました
MetaのTwitterライバルアプリ「Threads」に1000万人が登録
Twitterのようなマイクロブログ体験からは、Meta Platformsがプラットフォームに直接挑戦する準備を進めていることが示唆されています
新車販売が加速し、チップ不足が緩和される
供給チェーンの問題が緩和され、金利上昇にもかかわらず需要が強いままであるため、ゼネラルモーターズ、トヨタなどの自動車メーカーはトラックとスポーツユーティリティビークルの販売が増加しました
Explainable AI(説明可能なAI)とInterpretable AI(解釈可能なAI)の理解
最近の機械学習(ML)の技術革新の結果、MLモデルは人間の労働を不要にするために、さまざまな分野で使用されています。これらの分野は、著者や詩人が執筆スタイルを洗練させるのを手助けするだけでなく、タンパク質構造の予測などのように複雑なものもあります。さらに、MLモデルが医療診断、クレジットカード詐欺検出などの重要な産業で人気を集めるにつれて、エラーに対する許容範囲は非常に低くなります。そのため、人間がこれらのアルゴリズムをより深く理解する必要があります。なぜなら、学術界がより堅牢なモデルを設計し、バイアスやその他の懸念事項に関する現行モデルの欠陥を修復するためには、MLモデルが予測を行う方法のより大きな知識を得ることが重要です。 ここで、解釈可能な(IAI)および説明可能な(XAI)人工知能技術が重要になり、その違いを理解する必要性がより明確になります。これらの2つの違いは、学者にさえ常に明確ではなく、解釈性と説明性という用語は、MLアプローチを指す際に時々同義的に使用されます。MLフィールドでの人気が高まるにつれて、IAIとXAIモデルの区別をすることは重要です。これにより、組織が使用ケースに最適な戦略を選択するための支援が可能になります。 要するに、解釈可能なAIモデルは、モデルの要約とパラメータを見るだけで人間が簡単に理解できるものです。つまり、IAIモデルは独自の説明を提供します。一方、説明可能なAIモデルは、人間が追加の方法なしでは理解することができない非常に複雑な深層学習モデルです。これが、説明可能なAIモデルがなぜ特定の決定が下されたかを明確に示すことができるが、その決定に至るまでの手順はわからない理由です。この記事の残りでは、解釈性と説明性の概念についてより詳しく説明し、例を使って理解します。 1. 解釈可能な機械学習 私たちは、何かの意味を理解することが可能であれば、それは解釈可能であると主張します。つまり、その原因と結果を明確に特定することができます。例えば、誰かが夕食後にチョコレートをたくさん食べると、いつも眠れなくなります。このような状況は解釈することができます。MLの領域では、モデルのパラメータに基づいて人々が自分自身で理解できる場合、モデルは解釈可能と言われます。解釈可能なAIモデルでは、人間はモデルが特定の解を導き出す方法を簡単に理解することができますが、その結果に至るための基準が合理的であるかどうかはわかりません。意思決定木や線形回帰は、解釈可能なモデルの例です。以下の例を使って解釈性をより良く説明しましょう。 貸付申請の承認を決定するために訓練された決定木モデルを使用する銀行を考えてみましょう。申請者の年齢、月収、未払いの他のローンなどが決定に考慮されます。特定の決定がなされた理由を理解するために、木のノードを簡単にたどることができ、決定基準に基づいて最終結果がどうなったかを理解することができます。例えば、決定基準が、学生ではない人の月収が$3000未満の場合、ローン申請は承認されないと指定することができます。しかし、これらのモデルを使用して決定基準を選択する背後の理論は理解できません。例えば、このシナリオでは、非学生の申請者に対して$3000以上の最低収入要件が適用される理由は、モデルが説明できません。 モデルが予測を生成する方法を理解するためには、重み、特徴などを含むさまざまな要素を解釈することが必要です。ただし、これはモデルがかなりシンプルな場合にのみ可能です。線形回帰モデルや決定木は、パラメータの数が少ないです。モデルが複雑になるにつれて、この方法では理解することができなくなります。 2. 説明可能な機械学習 説明可能なAIモデルは、内部の仕組みが人間にとって理解することができないほど複雑なものです。モデルの特徴を入力とし、最終的に生成される予測を出力とするブラックボックスモデルも、MLアルゴリズムの別名です。人間は、これらの「ブラックボックス」システムを理解するために追加の手法が必要です。そのようなモデルの例としては、多数の決定木からなるランダムフォレスト分類器があります。このモデルでは、最終予測を決定する際に各ツリーの予測が考慮されます。LogoNetなどのニューラルネットワークベースのモデルを考慮すると、この複雑さはさらに増します。このようなモデルの複雑さが増すにつれて、モデルの重みを見るだけではモデルを理解することは不可能です。 先述のように、人間は洗練されたアルゴリズムがどのように予測を生成するかを理解するために追加の手法が必要です。研究者は、入力データとモデルが生成する予測との間の関連性を見つけるためにさまざまな手法を利用しており、これによってMLモデルの振る舞いを理解するのに役立ちます。このようなモデルに依存しない手法(モデルの種類に依存しない手法)には、部分依存プロット、SHapley加法的説明(SHAP)依存プロット、代替モデルなどが含まれます。さらに、異なる特徴の重要性を強調するいくつかのアプローチも採用されています。これらの戦略は、各属性がターゲット変数を予測するためにどのように利用されるかを評価します。スコアが高いほど、その特徴はモデルにとってより重要であり、予測に大きな影響を与えます。 しかし、まだ残る疑問は、なぜMLモデルの解釈性と説明可能性を区別する必要があるのかということです。上記の議論から明らかなように、いくつかのモデルは他のモデルよりも解釈しやすいです。単純に言えば、あるモデルが他のモデルよりも予測の仕組みが人間に理解しやすい場合、そのモデルはより解釈しやすいと言えます。また、一般的には、ニューラルネットワークを含むより複雑なモデルは、より解釈しやすいですが、精度が低くなる傾向があります。したがって、高い解釈性は通常、低い精度の代償となります。例えば、画像認識にロジスティック回帰を使用すると、劣った結果になります。一方、モデルの説明可能性は、高いパフォーマンスを達成したいがモデルの振る舞いを理解する必要がある場合により重要な役割を果たします。 したがって、企業は新しいMLプロジェクトを開始する前に、解釈性が必要かどうかを考慮する必要があります。データセットが大きく、データが画像やテキストの形式である場合、ニューラルネットワークは高いパフォーマンスで顧客の目標を達成することができます。このような場合、パフォーマンスを最大化するために複雑な手法が必要な場合、データサイエンティストは解釈性よりもモデルの説明可能性に重点を置きます。このため、モデルの説明可能性と解釈性の違いを理解し、どちらを優先するかを知ることが重要です。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.