Learn more about Search Results Twitter - Page 41

カスタムデータセットでセマンティックセグメンテーションモデルを微調整する

このガイドでは、最先端のセマンティックセグメンテーションモデルであるSegformerのファインチューニング方法を紹介します。私たちの目標は、ピザ配達ロボットのためのモデルを構築することで、それによってロボットがどこに進むべきかを見ることができ、障害物を認識できるようにすることです 🍕🤖。最初に、Segments.aiで一連の歩道の画像にラベルを付けます。次に、🤗 transformersというオープンソースのライブラリを使用して、事前学習済みのSegFormerモデルをファインチューニングします。このライブラリは、最先端のモデルの簡単な実装を提供しています。このプロセスで、最大のオープンソースのモデルとデータセットのカタログであるHugging Face Hubの使用方法も学びます。 セマンティックセグメンテーションは、画像内の各ピクセルを分類するタスクです。これはより正確な画像の分類方法と見なすことができます。医療画像や自動運転など、さまざまな分野で幅広い用途があります。例えば、ピザ配達ロボットの場合、画像内の歩道がどこにあるか正確に知ることが重要です。 セマンティックセグメンテーションは分類の一種であるため、画像分類とセマンティックセグメンテーションに使用されるネットワークアーキテクチャは非常に似ています。2014年、Longらによる画像セグメンテーションのための異彩を放つ論文では、畳み込みニューラルネットワークが使用されています。最近では、画像分類にTransformers(例:ViT)が使用されており、最新のセマンティックセグメンテーションにも使用されており、最先端の技術をさらに押し上げています。 SegFormerは、2021年にXieらによって提案されたセマンティックセグメンテーションのモデルです。ポジションエンコーディングを使用しない階層的なトランスフォーマーエンコーダと、単純な多層パーセプトロンデコーダを持っています。SegFormerは、複数の一般的なデータセットで最先端の性能を実現しています。さあ、ピザ配達ロボットが歩道の画像でどのようにパフォーマンスを発揮するか見てみましょう。 必要な依存関係をインストールして始めましょう。データセットとモデルをHugging Face Hubにプッシュするために、Git LFSをインストールし、Hugging Faceにログインする必要があります。 git-lfsのインストール方法は、お使いのシステムによって異なる場合があります。Google ColabにはGit LFSが事前にインストールされていることに注意してください。 pip install -q transformers datasets evaluate segments-ai apt-get…

機械学習の専門家 – マーガレット・ミッチェル

みなさん、こんにちは!Machine Learning Expertsへようこそ。私は司会のBritney Mullerです。今日のゲストは、マーガレット・ミッチェル(通称メグ)です。メグはGoogleのEthical AIグループの創設者兼共同リーダーであり、機械学習の分野でのパイオニアであり、50以上の論文を発表しているだけでなく、Ethical AIの分野でのリーディングリサーチャーでもあります。 メグがエシカルAIの重要性に気づいた瞬間(素晴らしいストーリー!)、MLチームが有害なデータバイアスにより意識的になる方法、およびMLにおける包括性と多様性の力(およびパフォーマンスの利点)について話すことができます。 このパワフルなエピソードをご紹介できることをとても楽しみにしています!こちらがメグ・ミッチェルとの対談です: 転写: 注:転写はわかりやすい読みやすさを提供するためにわずかに修正/再フォーマットされています。 あなたの経歴とHugging Faceへの経緯について少し共有していただけますか? Dr. マーガレット・ミッチェルの経歴: Reed Collegeで言語学の学士号を取得 – NLPに取り組んだ 学士号取得後、補助および補完技術に取り組み、修士課程中も同様に研究 ワシントン大学で計算言語学の修士号を取得 コンピュータサイエンスの博士号を取得 メグ:私はJohns Hopkinsでポスドクとして統計的な研究を行い、その後、Microsoft Researchに移り、ビジョンから言語生成に取り組み、盲目の人々が世界をより簡単に移動できるようにするSeeing…

機械学習の専門家 – ルイス・タンストール

🤗 マシンラーニングエキスパートへようこそ – ルイス・タンストール こんにちは、みなさん!マシンラーニングエキスパートへようこそ。私は司会のブリトニー・ミュラーです。今日のゲストはルイス・タンストールさんです。ルイスさんはHugging Faceのマシンラーニングエンジニアで、トランスフォーマーを使ってビジネスプロセスを自動化し、MLOpsの課題を解決するための取り組みを行っています。 ルイスさんは、NLP、トポロジカルデータ解析、時系列の領域でスタートアップや企業向けに機械学習アプリケーションを開発してきました。 ルイスさんは、彼の新しい本、トランスフォーマー、大規模モデルの評価、MLエンジニアがより高速なレイテンシとスループットを目指すための最適化方法などについて話します。 以前は理論物理学者であり、仕事以外ではギターを弾いたり、トレイルランニングをしたり、オープンソースプロジェクトに貢献したりすることが好きです。 この楽しくて素晴らしいエピソードを紹介するのをとても楽しみにしています!ここで私がルイス・タンストールさんとの会話をお届けします。 注:転写はわかりやすい読みやすい体験を提供するために、わずかに修正/再フォーマットされています。 ようこそ、ルイスさん!お忙しい中、私との素晴らしいお仕事についてお話しいただき、本当にありがとうございます! ルイス: ありがとうございます、ブリトニーさん。こちらこそ、ここにいさせていただけて光栄です。 簡単な自己紹介と、Hugging Faceへの経緯について教えていただけますか? ルイス: 私をHugging Faceに導いたものはトランスフォーマーです。2018年、私はスイスのスタートアップでトランスフォーマーを使って仕事をしていました。最初のプロジェクトは、テキストを入力してそのテキスト内の質問に答えを見つけるためのモデルを訓練する質問応答のタスクでした。 当時のライブラリは「pytorch-pretrained-bert」という名前で、いくつかのスクリプトを持つ非常に特化したコードベースでした。私はトランスフォーマーについて何が起こっているのか全くわからず、オリジナルの「Attention Is All You Need」という論文を読んでも理解できませんでした。そこで他の学習リソースを探し始めました。…

KiliとHuggingFace AutoTrainを使用した意見分類

イントロダクション ユーザーのニーズを理解することは、ユーザーに関連するビジネスにおいて重要です。しかし、それには多くの労力と分析が必要であり、非常に高価です。ならば、Machine Learningを活用しませんか?Auto MLを使用することでコーディングを大幅に削減できます。 この記事では、HuggingFace AutoTrainとKiliを活用して、テキスト分類のためのアクティブラーニングパイプラインを構築します。Kiliは、品質の高いトレーニングデータ作成を通じて、データ中心のアプローチを強力にサポートするプラットフォームです。協力的なデータ注釈ツールとAPIを提供し、信頼性のあるデータセット構築とモデルトレーニングの素早い反復を可能にします。アクティブラーニングとは、データセットにラベル付けされたデータを追加し、モデルを反復的に再トレーニングするプロセスです。そのため、終わりのない作業であり、人間がデータにラベルを付ける必要があります。 この記事の具体的なユースケースとして、Google PlayストアのVoAGIのユーザーレビューを使用してパイプラインを構築します。その後、構築したパイプラインでレビューをカテゴリ分類します。最後に、分類されたレビューに感情分析を適用します。その結果を分析することで、ユーザーのニーズと満足度を理解することが容易になります。 HuggingFaceを使用したAutoTrain 自動化されたMachine Learningは、Machine Learningパイプラインの自動化を指す用語です。データクリーニング、モデル選択、ハイパーパラメータの最適化も含まれます。🤗 transformersを使用して自動的にハイパーパラメータの検索を行うことができます。ハイパーパラメータの最適化は困難で時間のかかるプロセスです。 transformersや他の強力なAPIを使用してパイプラインを自分自身で構築することもできますが、AutoTrainを完全に自動化することも可能です。AutoTrainは、transformers、datasets、inference-apiなどの多くの強力なAPIを基に構築されています。 データのクリーニング、モデルの選択、ハイパーパラメータの最適化のステップは、すべてAutoTrainで完全に自動化されています。このフレームワークをフルに活用することで、特定のタスクに対してプロダクションレディのSOTAトランスフォーマーモデルを構築することができます。現在、AutoTrainはバイナリとマルチラベルのテキスト分類、トークン分類、抽出型質問応答、テキスト要約、テキストスコアリングをサポートしています。また、英語、ドイツ語、フランス語、スペイン語、フィンランド語、スウェーデン語、ヒンディー語、オランダ語など、多くの言語もサポートしています。AutoTrainでサポートされていない言語の場合、カスタムモデルとカスタムトークナイザを使用することも可能です。 Kili Kiliは、データ中心のビジネス向けのエンドツーエンドのAIトレーニングプラットフォームです。Kiliは、最適化されたラベリング機能と品質管理ツールを提供し、データを管理するための便利な手段を提供します。画像、ビデオ、テキスト、PDF、音声データを素早く注釈付けできます。GraphQLとPythonの強力なAPIも備えており、データ管理を容易にします。 オンラインまたはオンプレミスで利用可能であり、コンピュータビジョンやNLP、OCRにおいてモダンなMachine Learning技術を実現することができます。テキスト分類、固有表現認識(NER)、関係抽出などのNLP / OCRタスクをサポートしています。また、オブジェクト検出、画像転写、ビデオ分類、セマンティックセグメンテーションなどのコンピュータビジョンタスクもサポートしています。 Kiliは商用ツールですが、Kiliのツールを試すために無料のデベロッパーアカウントを作成することもできます。料金については、価格ページから詳細を確認できます。 プロジェクト モバイルアプリケーションについての洞察を得るために、レビューの分類と感情分析の例を取り上げます。…

Hugging Faceハブへ、fastaiさんを歓迎します

ニューラルネットを再びクールじゃなくする…そして共有する Deep Learningのアクセシビリティを高めるために、fast.aiエコシステムは他に類を見ない成果を上げてきました。Hugging Faceの使命は、優れた機械学習を民主化することです。機械学習へのアクセスの排他性、事前学習済みモデルを過去のものとし、この素晴らしい領域をさらに推進しましょう。 fastaiは、PyTorchとPythonを活用して、テキスト、画像、表形式のデータに対して最新の出力を備えた高速かつ正確なニューラルネットワークをトレーニングするためのハイレベルなコンポーネントを提供するオープンソースのDeep Learningライブラリです。ただし、fast.aiは単なるライブラリ以上のものです。それはオープンソースの貢献者とニューラルネットワークの学習に取り組む人々の繁栄するエコシステムに成長しました。いくつかの例として、彼らの書籍やコースをチェックしてみてください。fast.aiのDiscordやフォーラムに参加してください。彼らのコミュニティに参加することで、確実に学びが得られます! これら全ての理由から(この記事の執筆者はfast.aiのコースのおかげで自分の旅をスタートさせました)、私たちは誇りを持ってお知らせします。fastaiのプラクティショナーは、Pythonの一行でモデルをHugging Face Hubに共有・アップロードすることができるようになりました。 👉 この記事では、fastaiとHubの統合について紹介します。さらに、このチュートリアルをColabノートブックとして開くこともできます。 fast.aiコミュニティ、特にJeremy Howard、Wayde Gilliam、Zach Muellerにフィードバックをいただいたことに感謝します 🤗。このブログは、fastaiドキュメントのHugging Face Hubセクションに強く触発されています。 Hubに共有する理由 Hubは、モデル、データセット、MLデモを共有・探索できる中央プラットフォームです。最も広範なオープンソースのモデル、データセット、デモのコレクションを提供しています。 Hubで共有することで、あなたのfastaiモデルの影響力を広げ、他の人がダウンロードして探索できるようにします。また、fastaiモデルを転移学習に利用することもできます。他の誰かのモデルをタスクの基礎として読み込むことができます。 誰でも、hf.co/modelsのウェブページでfastaiライブラリをフィルタリングすることで、Hubの全てのfastaiモデルにアクセスできます。以下の画像を参照してください。 広範なコミュニティへの無料モデルホスティングと露出に加えて、Hubにはgitに基づいたバージョン管理(大容量ファイルの場合はgit-lfs)や、発見性と再現性のためのモデルカードも組み込まれています。Hubのナビゲーションについての詳細は、この紹介を参照してください。 Hugging…

最適なパイプラインとトランスフォーマーパイプラインによる高速推論

推論は、Hugging Face TransformersパイプラインをサポートしてOptimumに追加されました。これには、ONNX Runtimeを使用したテキスト生成も含まれます。 BERTとTransformersの採用はますます拡大しています。Transformerベースのモデルは、自然言語処理だけでなく、コンピュータビジョン、音声、時間系列でも最先端の性能を発揮しています。💬 🖼 🎤 ⏳ 企業は、Transformerモデルを大規模なワークロードに使用するため、実験および研究フェーズから本番フェーズに移行しています。ただし、デフォルトでは、BERTおよびその関連製品は、従来の機械学習アルゴリズムと比較して、比較的遅くて大きくて複雑なモデルです。 この課題を解決するために、私たちはOptimumを作成しました。これは、BERTなどのTransformerモデルのトレーニングと推論を高速化するためのHugging Face Transformersの拡張機能です。 このブログ投稿では、次のことを学びます: 1. Optimumとは何ですか?ELI5 2. 新しいOptimum推論とパイプラインの機能 3. RoBERTaの質問応答を加速するためのエンドツーエンドチュートリアル、量子化、最適化を含む 4. 現在の制限事項 5. Optimum推論FAQ 6.…

機械学習の専門家 – Sasha Luccioni

🤗 マシンラーニングエキスパートへようこそ – サーシャ・ルッチョーニ 🚀 サーシャのようなMLエキスパートがあなたのMLロードマップを加速する方法に興味がある場合は、hf.co/supportを訪れてください。 こんにちは、友達たち!マシンラーニングエキスパートへようこそ。私は司会者のブリトニー・ミュラーで、今日のゲストはサーシャ・ルッチョーニです。サーシャは、Hugging Faceで研究科学者として、機械学習モデルとデータセットの倫理的・社会的影響に取り組んでいます。 サーシャはまた、Big Science WorkshopのCarbon Footprint WGの共同議長、WiMLの理事、そして気候危機に機械学習を適用する意義のある活動を促進するClimate Change AI(CCAI)組織の創設メンバーでもあります。 サーシャがメールの炭素フットプリントを計測する方法、地元のスープキッチンが機械学習の力を活用するのをどのように手助けしたか、そして意味と創造性が彼女の仕事を支える方法についてお話しいただきます。 この素晴らしいエピソードを紹介するのをとても楽しみにしています!以下がサーシャ・ルッチョーニとの私の対話です: 注:転記はわかりやすい読み物を提供するためにわずかに修正/書式設定されています。 今日参加していただき、本当にありがとうございます。私たちはあなたが来てくれたことを非常に嬉しく思っています! サーシャ: 私もここにいることを本当に嬉しく思っています。 直接本題に入りますが、あなたのバックグラウンドとHugging Faceへの道を教えていただけますか? サーシャ:…

Hugging Face Optimumを使用して、TransformersをONNXに変換する

ハグフェース・ハブには、毎日何百ものトランスフォーマーの実験とモデルがアップロードされています。これらの実験を行う機械学習エンジニアや学生は、PyTorch、TensorFlow/Keras、その他のさまざまなフレームワークを使用しています。これらのモデルはすでに数千の企業によって使用され、AIを搭載した製品の基盤となっています。 トランスフォーマーのモデルを本番環境で展開する場合、まずは特殊なランタイムとハードウェア上で読み込み、最適化、実行できるシリアライズされた形式にエクスポートすることをお勧めします。 このガイドでは、以下のことについて学びます: ONNXとは何か Hugging Face Optimumとは何か どのトランスフォーマーアーキテクチャがサポートされているか トランスフォーマーモデル(BERT)をONNXに変換する方法 次は何か さあ、始めましょう! 🚀 モデルを最大限の効率で実行するために最適化することに興味がある場合は、🤗 Optimumライブラリをチェックしてください。 5. 次は何か トランスフォーマーモデルをONNXに正常に変換したので、最適化および量子化ツールの全セットが使用できるようになりました。次のステップとしては、以下のことが考えられます: Optimumとトランスフォーマーパイプラインを使用した高速推論にONNXモデルを使用する モデルに静的量子化を適用して、レイテンシを約3倍改善する トレーニングにONNXランタイムを使用する ONNXモデルをTensorRTに変換してGPUパフォーマンスを向上させる … モデルを最大限の効率で実行するために最適化することに興味がある場合は、🤗 Optimumライブラリをチェックしてください。…

文のトランスフォーマーを使用してプレイリスト生成器を構築する

数時間前に、Sentence TransformersとGradioを使用して構築したプレイリスト生成器を公開しました。それに続いて、プロジェクトを効果的な学習体験として活用する方法について考察しました。しかし、実際にプレイリスト生成器をどのように構築したのでしょうか?この投稿では、そのプロジェクトを解説し、埋め込みの生成方法と多段階のGradioデモの構築方法について説明します。 以前のHugging Faceブログの記事でも探求したように、Sentence Transformers(ST)は文の埋め込みを生成するためのツールを提供するライブラリです。使用できる歌詞のデータセットにアクセスできたため、STの意味的検索機能を活用して与えられたテキストプロンプトからプレイリストを生成することにしました。具体的には、プロンプトから埋め込みを作成し、その埋め込みを事前生成された歌詞の埋め込みセット全体で意味的検索に使用し、関連するソングのセットを生成することでした。これはすべて、Hugging Face Spacesでホストされた新しいBlocks APIを使用したGradioアプリに包括されます。 Gradioのやや高度な使用方法について説明しますので、ライブラリに初めて取り組む方は、この投稿のGradio固有の部分に取り組む前に、Blocksの紹介を読むことをお勧めします。また、歌詞のデータセットは公開しませんが、Hugging Face Hubで歌詞の埋め込みを試すことができます。それでは、始めましょう! 🪂 Sentence Transformers:埋め込みと意味的検索 埋め込みはSentence Transformersの鍵です!以前の記事で埋め込みが何であり、どのように生成するかについて学びましたので、この投稿を続ける前にそれをチェックすることをお勧めします。 Sentence Transformersには、事前学習された埋め込みモデルの大規模なコレクションがあります!独自のトレーニングデータを使用してこれらのモデルを微調整するチュートリアルも用意されていますが、多くのユースケース(歌詞のコーパスを対象とした意味的検索など)では、事前学習されたモデルが問題なく機能します。ただし、利用可能な埋め込みモデルが非常に多いため、どれを使用するかをどのように知ることができるのでしょうか? STのドキュメントでは、多くの選択肢が強調されており、評価メトリックといくつかの使用ケースの説明も示されています。MS MARCOモデルはBing検索エンジンのクエリでトレーニングされていますが、他のドメインでも優れたパフォーマンスを発揮するため、このプロジェクトではこれらのいずれかを選択することができると判断しました。プレイリスト生成器に必要なのは、いくつかの意味的な類似性を持つ曲を見つけることであり、特定のパフォーマンス指標に達成することにはあまり興味がないため、sentence-transformers/msmarco-MiniLM-L-6-v3を任意に選びました。 STの各モデルには、設定可能な入力シーケンス長があります(最大値まで)。その後、入力は切り捨てられます。私が選んだモデルは最大シーケンス長が512ワードピースであり、これは歌を埋め込むのに十分ではないことがわかりました。幸いなことに、歌詞をモデルが解析できるように小さなチャンクに分割する簡単な方法があります。それは、詩です!歌を詩に分割し、各詩を埋め込んだ後、検索がはるかに優れた結果を示すことになります。 歌は詩に分割され、それぞれの詩は埋め込まれます。 実際に埋め込みを生成するには、Sentence Transformersモデルの.encode()メソッドを呼び出し、文字列のリストを渡すだけです。その後、埋め込みを好きな方法で保存できます。この場合は、pickle形式で保存することにしました。…

Hugging Face TransformersとHabana Gaudiを使用して、BERTを事前に学習する

このチュートリアルでは、Habana GaudiベースのDL1インスタンスを使用してBERT-baseをゼロから事前トレーニングする方法を学びます。Gaudiのコストパフォーマンスの利点を活用するためにAWSで使用します。Hugging Face Transformers、Optimum Habana、およびDatasetsライブラリを使用して、マスクされた言語モデリングを使用してBERT-baseモデルを事前トレーニングします。これは、最初のBERT事前トレーニングタスクの一つです。始める前に、ディープラーニング環境をセットアップする必要があります。 コードを表示する 以下のことを学びます: データセットの準備 トークナイザのトレーニング データセットの前処理 Habana Gaudi上でBERTを事前トレーニングする 注意:ステップ1から3は、CPUを多く使用するタスクのため、異なるインスタンスサイズで実行することができます/すべきです。 要件 始める前に、以下の要件を満たしていることを確認してください DL1インスタンスタイプのクオータを持つAWSアカウント AWS CLIがインストールされていること AWS IAMユーザーがCLIで構成され、ec2インスタンスの作成と管理の権限を持っていること 役立つリソース Hugging Face TransformersとHabana…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us