Learn more about Search Results CPU - Page 41

より小さいほうが良いです:Xeon上で効率的な生成AI体験、Q8-Chat

大規模言語モデル(LLM)は、機械学習の世界を席巻しています。Transformerアーキテクチャのおかげで、LLMはテキスト、画像、ビデオ、オーディオなどの大量の非構造化データから学習する驚異的な能力を持っています。テキスト分類のような抽出型のタスクや、テキスト要約、テキストから画像生成などの生成型のタスクでも非常に優れたパフォーマンスを発揮します。 その名前からもわかるように、LLMは一般的に100億パラメータを超える大規模なモデルです。BLOOMモデルのように1000億パラメータ以上のものもあります。LLMは、検索や対話型アプリケーションなどの低遅延のユースケースで十分に高速な予測を行うために、高性能なGPUに典型的に見られる大量の計算能力を必要とします。残念ながら、多くの組織にとっては関連するコストが高く、最先端のLLMをアプリケーションに使用することが困難になります。 この記事では、Intel CPU上で効率的に実行するために、LLMのサイズと推論レイテンシを減らす最適化技術について説明します。 量子化の基礎 通常、LLMは16ビットの浮動小数点パラメータ(FP16/BF16)でトレーニングされます。したがって、単一の重みまたはアクティベーション値の値を保存するためには2バイトのメモリが必要です。さらに、浮動小数点の演算は整数の演算よりも複雑で遅く、追加の計算能力が必要です。 量子化は、モデルパラメータが取ることができるユニークな値の範囲を縮小することで、両方の問題を解決するモデルの圧縮技術です。たとえば、モデルを8ビット整数(INT8)のような低精度に量子化して、モデルを縮小し、複雑な浮動小数点演算をより単純で高速な整数演算に置き換えることができます。 要するに、量子化はモデルパラメータをより小さな値範囲に再スケーリングします。成功すると、モデルのサイズが少なくとも2倍に縮小され、モデルの精度には影響しません。 量子化は、通常、トレーニング中に適用することができます。これを量子化対応トレーニング(QAT)と呼びますが、一般的に最良の結果が得られます。既存のモデルを量子化する場合は、非常に少ない計算能力を必要とする高速なテクニックであるポストトレーニング量子化(PTQ)を適用することもできます。 さまざまな量子化ツールが利用可能です。たとえば、PyTorchには量子化の組み込みサポートがあります。また、QATおよびPTQのための開発者向けのAPIを備えたHugging Face Optimum Intelライブラリを使用することもできます。 LLMの量子化 最近の研究[1][2]によると、現在の量子化技術はLLMとはうまく機能しません。特に、LLMはすべてのレイヤーとトークンで特定のアクティベーションチャネルに大きな値の外れ値を示します。以下はOPT-13Bモデルの例です。すべてのトークンで、アクティベーションの1つのチャネルが他のすべてのチャネルよりもはるかに大きな値を持っていることがわかります。この現象はモデルのすべてのTransformerレイヤーで見られます。 *出典: SmoothQuant* 現在の最良の量子化技術は、トークン単位でアクティベーションを量子化し、切り捨てられた外れ値または低いマグニチュードのアクティベーションを引き起こします。いずれの解決策もモデルの品質に大きな影響を与えます。さらに、量子化対応トレーニングには追加のモデルトレーニングが必要であり、計算リソースとデータの不足のため、ほとんどの場合には実用的ではありません。 SmoothQuant[3][4]は、この問題を解決する新しい量子化技術です。それは重みとアクティベーションに共同の数学的変換を適用し、アクティベーションの外れ値と非外れ値の比率を減らすことで、Transformerのレイヤーを「量子化に適した」状態にします。これにより、モデルの品質に影響を与えずに8ビットの量子化が可能となります。その結果、SmoothQuantはIntel CPUプラットフォーム上で優れたパフォーマンスを発揮する、より小さく、高速なモデルを生成します。 *出典: SmoothQuant* それでは、SmoothQuantを人気のあるLLMに適用した場合の動作を見てみましょう。 SmoothQuantを使用したLLMの量子化…

大規模なネアデデュープリケーション:BigCodeの背後に

対象読者 大規模な文書レベルの近似除去に興味があり、ハッシュ、グラフ、テキスト処理のいくつかの理解を持つ人々。 動機 モデルにデータを供給する前にデータをきちんと扱うことは重要です。古い格言にあるように、ゴミを入れればゴミが出てきます。データ品質があまり重要ではないという幻想を作り出す見出しをつかんでいるモデル(またはAPIと言うべきか)が増えるにつれて、それがますます難しくなっています。 BigScienceとBigCodeの両方で直面する問題の1つは、ベンチマークの汚染を含む重複です。多くの重複がある場合、モデルはトレーニングデータをそのまま出力する傾向があることが示されています[1](ただし、他のドメインではそれほど明確ではありません[2])。また、重複はモデルをプライバシー攻撃に対しても脆弱にする要因となります[1]。さらに、重複除去の典型的な利点には以下があります: 効率的なトレーニング:トレーニングステップを少なくして、同じかそれ以上のパフォーマンスを達成できます[3][4]。 データ漏洩とベンチマークの汚染を防ぐ:ゼロでない重複は評価を信用できなくし、改善という主張が偽りになる可能性があります。 アクセシビリティ:私たちのほとんどは、何千ギガバイトものテキストを繰り返しダウンロードまたは転送する余裕がありません。固定サイズのデータセットに対して、重複除去は研究、転送、共同作業を容易にします。 BigScienceからBigCodeへ 近似除去のクエストに参加した経緯、結果の進展、そして途中で得た教訓について最初に共有させてください。 すべてはBigScienceがすでに数ヶ月前に始まっていたLinkedIn上の会話から始まりました。Huu Nguyenは、私のGitHubの個人プロジェクトに気付き、BigScienceのための重複除去に取り組むことに興味があるかどうか私に声をかけました。もちろん、私の答えは「はい」となりましたが、データの膨大さから単独でどれだけの努力が必要になるかは全く無知でした。 それは楽しくも挑戦的な経験でした。その大規模なデータの研究経験はほとんどなく、みんながまだ信じていたにもかかわらず、何千ドルものクラウドコンピュート予算を任せられるという意味で挑戦的でした。はい、数回マシンをオフにしたかどうかを確認するために寝床から起きなければならなかったのです。その結果、試行錯誤を通じて仕事を学びましたが、それによってBigScienceがなければ絶対に得られなかった新しい視点が開かれました。 さらに、1年後、私は学んだことをBigCodeに戻して、さらに大きなデータセットで作業をしています。英語向けにトレーニングされたLLMに加えて、重複除去がコードモデルの改善につながることも確認しました[4]。さらに、はるかに小さなデータセットを使用しています。そして今、私は学んだことを、親愛なる読者の皆さんと共有し、重複除去の視点を通じてBigCodeの裏側で何が起こっているかを感じていただければと思います。 興味がある場合、BigScienceで始めた重複除去の比較の最新バージョンをここで紹介します: これはBigCodeのために作成したコードデータセット用のものです。データセット名が利用できない場合はモデル名が使用されます。 MinHash + LSHパラメータ( P , T , K…

🐶セーフテンソルは、本当に安全であり、デフォルトの選択肢として採用されました

Hugging Faceは、EleutherAIとStability AIとの緊密な協力のもと、safetensorsライブラリの外部セキュリティ監査を依頼しました。その結果、これらの組織はすべてライブラリを保存モデルのデフォルト形式にするために進むことができます。 Trail of Bitsによって実施されたセキュリティ監査の詳細な結果は、こちらでご覧いただけます: レポート。 以下のブログ投稿では、このライブラリの起源、この監査結果の重要性、および次のステップについて説明します。 safetensorsとは何ですか? 🐶 safetensorsは、最も一般的なフレームワーク(PyTorch、TensorFlow、JAX、PaddlePaddle、NumPyなど)でテンソルを保存およびロードするためのライブラリです。 具体的な説明のために、PyTorchを使用します。 import torch from safetensors.torch import load_file, save_file weights = {"embeddings": torch.zeros((10, 100))}…

bitsandbytes、4ビットの量子化、そしてQLoRAを使用して、LLMをさらに利用しやすくする

LLMは大きいことで知られており、一般のハードウェア上で実行またはトレーニングすることは、ユーザーにとって大きな課題であり、アクセシビリティも困難です。私たちのLLM.int8ブログポストでは、LLM.int8論文の技術がtransformersでどのように統合され、bitsandbytesライブラリを使用しているかを示しています。私たちは、モデルをより多くの人々にアクセス可能にするために、再びbitsandbytesと協力することを決定し、ユーザーが4ビット精度でモデルを実行できるようにしました。これには、テキスト、ビジョン、マルチモーダルなどの異なるモダリティの多くのHFモデルが含まれます。ユーザーはまた、Hugging Faceのエコシステムからのツールを活用して4ビットモデルの上にアダプタをトレーニングすることもできます。これは、DettmersらによるQLoRA論文で今日紹介された新しい手法です。論文の概要は以下の通りです: QLoRAは、1つの48GBのGPUで65Bパラメータモデルをフィントゥーニングするためのメモリ使用量を十分に削減しながら、完全な16ビットのフィントゥーニングタスクのパフォーマンスを維持する効率的なフィントゥーニングアプローチです。QLoRAは、凍結された4ビット量子化された事前学習言語モデルをLow Rank Adapters(LoRA)に逆伝搬させます。私たちの最高のモデルファミリーであるGuanacoは、Vicunaベンチマークで以前に公開されたすべてのモデルを上回り、ChatGPTのパフォーマンスレベルの99.3%に達しますが、1つのGPUでのフィントゥーニングには24時間しかかかりません。QLoRAは、パフォーマンスを犠牲にすることなくメモリを節約するためのいくつかの革新を導入しています:(a)通常分布された重みに対して情報理論的に最適な新しいデータ型である4ビットNormalFloat(NF4)(b)量子化定数を量子化して平均メモリフットプリントを減らすためのダブル量子化、および(c)メモリスパイクを管理するためのページドオプティマイザ。私たちはQLoRAを使用して1,000以上のモデルをフィントゥーニングし、高品質のデータセットを使用した指示の追跡とチャットボットのパフォーマンスの詳細な分析を提供しています。これは通常のフィントゥーニングでは実行不可能である(例えば33Bおよび65Bパラメータモデル)モデルタイプ(LLaMA、T5)とモデルスケールを横断したものです。私たちの結果は、QLoRAによる小規模な高品質データセットでのフィントゥーニングが、以前のSoTAよりも小さいモデルを使用しても最先端の結果をもたらすことを示しています。さらに、ヒューマンとGPT-4の評価に基づいてチャットボットのパフォーマンスの詳細な分析を提供し、GPT-4の評価がヒューマンの評価に対して安価で合理的な代替手段であることを示しています。さらに、現在のチャットボットのベンチマークは、チャットボットのパフォーマンスレベルを正確に評価するための信頼性がないことがわかります。レモンピックされた分析では、GuanacoがChatGPTに比べてどこで失敗するかを示しています。私たちは4ビットトレーニングのためのCUDAカーネルを含む、すべてのモデルとコードを公開しています。 リソース このブログポストとリリースには、4ビットモデルとQLoRAを始めるためのいくつかのリソースがあります: 元の論文 基本的な使用法Google Colabノートブック-このノートブックでは、4ビットモデルとその変種を使用した推論の方法、およびGoogle ColabインスタンスでGPT-neo-X(20Bパラメータモデル)を実行する方法を示しています。 フィントゥーニングGoogle Colabノートブック-このノートブックでは、Hugging Faceエコシステムを使用してダウンストリームタスクで4ビットモデルをフィントゥーニングする方法を示しています。Google ColabインスタンスでGPT-neo-X 20Bをフィントゥーニングすることが可能であることを示しています。 論文の結果を再現するための元のリポジトリ Guanaco 33b playground-または以下のプレイグラウンドセクションをチェック はじめに モデルの精度と最も一般的なデータ型(float16、float32、bfloat16、int8)について詳しく知りたくない場合は、これらの概念の詳細について視覚化を含めた簡単な言葉で説明している私たちの最初のブログポストの紹介を注意深くお読みいただくことをお勧めします。 詳細については、このwikibookドキュメントを通じて浮動小数点表現の基本を読むことをお勧めします。 最近のQLoRA論文では、4ビットFloatと4ビットNormalFloatという異なるデータ型を探求しています。ここでは、理解しやすい4ビットFloatデータ型について説明します。…

ファルコンはHugging Faceのエコシステムに着陸しました

イントロダクション ファルコンは、アブダビのテクノロジーイノベーション研究所が作成し、Apache 2.0ライセンスの下で公開された最新の言語モデルの新しいファミリーです。 特筆すべきは、Falcon-40Bが多くの現在のクローズドソースモデルと同等の機能を持つ、初めての「真にオープンな」モデルであることです 。これは、開発者、愛好家、産業界にとって素晴らしいニュースであり、多くのエキサイティングなユースケースの扉を開くものです。 このブログでは、ファルコンモデルについて詳しく調査し、まずそれらがどのようにユニークであるかを説明し、その後、Hugging Faceのエコシステムのツールを使ってそれらの上に構築することがどれほど簡単かを紹介します。 目次 ファルコンモデル デモ 推論 評価 PEFTによるファインチューニング 結論 ファルコンモデル ファルコンファミリーは、2つのベースモデルで構成されています:Falcon-40Bとその弟であるFalcon-7Bです。 40Bパラメータモデルは現在、Open LLM Leaderboardのトップを占めており、7Bモデルはそのクラスで最高のモデルです 。 Falcon-40BはGPUメモリを約90GB必要としますが、それでもLLaMA-65Bよりは少なく、Falconはそれを上回します。一方、Falcon-7Bは約15GBしか必要とせず、推論やファインチューニングは一般的なハードウェアでも利用可能です。 (このブログの後半では、より安価なGPUでもFalcon-40Bを利用できるように、量子化を活用する方法について説明します!) TIIはまた、モデルのInstructバージョンであるFalcon-7B-InstructとFalcon-40B-Instructを提供しています。これらの実験的なバリアントは、命令と会話データに適応された調整が行われているため、人気のあるアシスタントスタイルのタスクに適しています。 モデルを素早く試してみたい場合は、これらが最適な選択肢です。…

はい、トランスフォーマーは時系列予測に効果的です(+オートフォーマー)

イントロダクション 数ヶ月前、AAAI 2021のベストペーパーアワードを受賞したTime Series TransformerであるInformerモデル(Zhou, Haoyiら、2021)を紹介しました。また、Informerを使用した多変量確率予測の例も提供しました。この記事では、「Transformerは時系列予測に効果的か?」(AAAI 2023)という疑問について議論します。見ていくとわかりますが、それらは効果的です。 まず、Transformerは確かに時系列予測に効果的であることを経験的に証明します。私たちの比較では、線形モデルであるDLinearが主張されるほど優れていないことが示されています。線形モデルと同じ設定の同等の大きさのモデルと比較した場合、Transformerベースのモデルは私たちが考慮するテストセットのメトリックでより優れた性能を発揮します。その後、Informerモデルの後にNeurIPS 2021で発表されたAutoformerモデル(Wu, Haixuら、2021)を紹介します。Autoformerモデルは現在🤗 Transformersで利用できます。最後に、Autoformerの分解層を使用するシンプルなフィードフォワードネットワークであるDLinearモデルについて説明します。DLinearモデルは、「Transformerは時系列予測に効果的か?」という論文で初めて紹介され、Transformerベースのモデルを時系列予測で上回ると主張されています。 さあ、始めましょう! ベンチマーキング – Transformers vs. DLinear 最近AAAI 2023で発表された「Transformerは時系列予測に効果的か?」という論文では、著者らはTransformerが時系列予測に効果的ではないと主張しています。彼らは、DLinearと呼ばれるシンプルな線形モデルとTransformerベースのモデルを比較しています。DLinearモデルはAutoformerモデルの分解層を使用しており、後ほどこの記事で紹介します。著者らは、DLinearモデルがTransformerベースのモデルを時系列予測で上回ると主張しています。本当にそうなのでしょうか?さあ、確かめましょう。 上記の表は、論文で使用された3つのデータセットにおけるAutoformerモデルとDLinearモデルの比較結果を示しています。結果からわかるように、Autoformerモデルは3つのデータセットすべてでDLinearモデルを上回っています。 次に、上記の表のTrafficデータセットを使用してAutoformerモデルとDLinearモデルを比較し、得られた結果の説明を提供します。 要約: 簡単な線形モデルは一部の場合において有利ですが、ユニバリエートの設定では変数を組み込む能力がTransformerのようなより複雑なモデルに比べてありません。 Autoformer…

iPhone、iPad、およびMacでのCore MLによる高速で安定した拡散

先週、WWDC’23(Apple Worldwide Developers Conference)が開催されました。キーノート中のVision Proの発表に焦点が当てられましたが、それだけではありません。毎年のように、WWDC週はAppleのオペレーティングシステムとフレームワークの新機能について深く掘り下げる200以上の技術セッションが詰まっています。今年は特に、圧縮と最適化のためのCore MLの変更に興奮しています。これらの変更により、Stable Diffusionなどのモデルの実行が高速化され、メモリ使用量も少なくなります!一例として、12月にiPhone 13で実行したテストと現在の6ビットパレット化を使用した速度の比較を考えてみましょう: 12月のiPhoneでのStable Diffusionと現在の6ビットパレット化 目次 新しいCore MLの最適化 量子化および最適化されたStable Diffusionモデルの使用 カスタムモデルの変換と最適化 6ビット未満の使用 結論 新しいCore MLの最適化 Core MLは、Appleのデバイス内で効率的に機械学習モデルを実行するための成熟したフレームワークであり、CPU、GPU、およびMLタスクに特化したニューラルエンジンなど、Appleデバイスのすべてのコンピューティングハードウェアを活用します。デバイス上での実行は、Stable Diffusionや大規模な言語モデルの人気によって引き起こされた非常に興味深い時期を迎えています。多くの人々がこれらのモデルをさまざまな理由でハードウェア上で実行したいと考えており、利便性やプライバシー、APIのコスト削減などがその理由です。自然に、多くの開発者がデバイス上でこれらのモデルを効率的に実行する方法を探求し、新しいアプリやユースケースを作成しています。この目標を達成するためのCore MLの改善は、コミュニティにとって大きなニュースです!…

ビジョン言語モデルの高速化:Habana Gaudi2上のBridgeTower

Optimum Habana v1.6 on Habana Gaudi2 では、最新のビジョン言語モデルである BridgeTower のファインチューニングにおいて、A100 と比較してほぼ3倍の高速化を実現しています。ハードウェアアクセラレーションによるデータの読み込みと高速な DDP 実装の2つの新機能がパフォーマンス向上に寄与しています。 これらの技術は、データの読み込みに制約がある他のワークロードにも適用できます。これは、さまざまなタイプのビジョンモデルに頻繁に起こるケースです。この投稿では、BridgeTower のファインチューニングを Habana Gaudi2 と Nvidia A100 80GB で比較するために使用したプロセスとベンチマークを紹介します。また、トランスフォーマーベースのモデルでこれらの機能を簡単に活用する方法も示します。 BridgeTower 最近のビジョン言語(VL)モデルは、さまざまなVLタスクで非常に重要であり、優位性を示しています。最も一般的なアプローチは、それぞれのモダリティから表現を抽出するためにユニモーダルエンコーダを利用することです。その後、これらの表現は融合されるか、クロスモーダルエンコーダに供給されます。VL表現学習のパフォーマンス制約と制限を効果的に扱うために、BridgeTower は複数のブリッジ層を導入し、ユニモーダルエンコーダのトップ層とクロスモーダルエンコーダの各層との間に接続を構築します。これにより、クロスモーダルエンコーダ内の異なる意味レベルで視覚とテキストの表現の効果的なボトムアップのクロスモーダルの整合性と融合が可能になります。…

MLモデルのパッケージング【究極のガイド】

機械学習モデルを数週間または数カ月かけて構築したことがありますか?そして、後でそれを本番環境に展開するのが複雑で時間がかかることがわかりましたか?または、モデルの複数のバージョンを管理し、展開に必要な依存関係と設定をすべて追跡するのに苦労しましたか?もし頷いているのであれば、...

CVモデルの構築と展開:コンピュータビジョンエンジニアからの教訓

コンピュータビジョン(CV)モデルの設計、構築、展開の経験を3年以上積んできましたが、私は人々がこのような複雑なシステムの構築と展開において重要な側面に十分な注力をしていないことに気づきましたこのブログ投稿では、私自身の経験と、最先端のCVモデルの設計、構築、展開において得た貴重な知見を共有します...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us