Learn more about Search Results 参考文献 - Page 41
- You may be interested
- 「データサイエンスにおける頻度論者とベ...
- 「ChatGPT4は人々の顔を認識して読み取る...
- なぜ科学者たちは仮想世界に没頭しているのか
- 「BFS、DFS、ダイクストラ、A*アルゴリズ...
- 「TidyBotでの掃除」
- 「時系列の外れ値を解読する:1/4」
- コンセプト2ボックスに出会ってください:...
- Streamlitを使用して、Hugging Face Space...
- データエンジニアのためのデータモデリング
- 『アウトラインを使った信頼性の高いLLMシ...
- 「スマートフォンのアタッチメントが神経...
- Plotlyを使用してマッププロットを作成す...
- シエラディビジョンは、NVIDIA Omniverse...
- 「数値処理者がクジラが奇妙な行動をして...
- 高度なRAGテクニック:イラスト入り概要
NLPとエリシットを用いたジェンダー平等に関する研究の探索
はじめに NLP(自然言語処理)は、膨大なテキストデータを理解するのに役立ちます。大量の文書を手作業で読む代わりに、これらの技術を利用して理解を高速化し、主要なメッセージに素早くたどり着くことができます。このブログ記事では、パンダデータフレームとPythonのNLPツールを使用して、Elicitを使用してアフガニスタンのジェンダー平等に関する研究で人々が何を書いたかを把握する可能性について探求します。これらの洞察は、女性や女の子にとって最も困難な場所の1つとされている国で、ジェンダー平等を推進するために何がうまくいき、何がうまくいかなかったかを理解するのに役立つかもしれません(World Economic Forum、2023年)。 学習目標 CSVファイル内のテキストのテキスト分析の習得 Pythonでの自然言語処理の方法に関する知識の習得 効果的なデータ可視化のためのスキルの開発 アフガニスタンにおけるジェンダー平等に関する研究が時間とともにどのように進展したかについての洞察の獲得 この記事は、データサイエンスブログマラソンの一環として公開されました。 文献レビューにおけるElicitの使用 基礎となるデータを生成するために、私はAIパワードツールであるElicitを使用して文献レビューを行います(Elicit)。ツールに質問をすることで、アフガニスタンでジェンダー平等が失敗した理由に関連する論文のリストを生成するように依頼します。その後、CSV形式で結果の論文リスト(150以上のランダムな数の論文とみなします)をダウンロードします。このデータはどのように見えるのでしょうか?さあ、見てみましょう! PythonでElicitからのCSVデータを分析する まず、CSVファイルをパンダデータフレームとして読み込みます: import pandas as pd # ファイルパスとCSVファイルを特定 file_path = './elicit.csv' #…
NODE:表形式に特化したニューラルツリー
近年、機械学習は人気が爆発し、ニューラルディープラーニングモデルは画像やテキストなどの複雑なタスクにおいて、XGBoost [4] のような浅いモデルを圧倒しました…
MongoDBで結合操作を実行するためのシンプルなテクニック
はじめに データベースの人々はJOINSに非常に精通しています。複数のテーブルからデータを取得する場合、主キーと外部キーに基づいてテーブルを結合することがよくあります。この記事では、MongoDBで結合操作を行うためのシンプルなテクニックを学びましょう。 画像の出典:Pixabay 上記の図は、組織のリレーショナルデータベーススキーマの図解です。これらのブロックは、特定の種類のデータ(学生/教授/従業員)を格納するテーブルであり、線と矢印は共通のキーを使用してテーブル間の関係を表します。テーブル間の関係に基づいて結合を行うことができます。 例えば、組織では、従業員、部門、プロジェクトなどのデータを格納するための別々のテーブルがあります。従業員の詳細と彼らがどの部門とプロジェクトで働いているかを取得するには、テーブル間で結合を行い必要なデータを取得する必要があります。 同様に、大学では、学生と教授のデータを格納するための別々のテーブルがあるかもしれません。特定の学生を教えている教授を見つけるには、テーブル間で結合を行う必要があります。 学習目標 このチュートリアルでは、MongoDBでさまざまな結合操作(内部結合、外部結合、右結合、左結合)をどのように実行できるかを見ていきます。 この記事は、Data Science Blogathonの一環として公開されました。 異なるタイプの共通結合操作の理解 A. SQLと異なる種類の結合 私たちの大部分はSQLデータベースの知識を持っています。そこでは、以下で説明する4つの主要な結合操作をよく行います。 1. 内部結合:両方のテーブルで共通のキーを持つ行のみが結果のテーブルに存在します。 学校データセットの2つのテーブル – Marks & Rank 内部結合 内部結合を実行した結果、Roll…
深層学習を用いた強力なレコメンデーションシステムの構築
顧客に適切なタイミングで適切な商品を提案することは、あらゆる業界において共通の課題です例えば、銀行業界では銀行員は常に顧客に高度に関連性のあるサービスを提案することを求めています...
価値あるデータテストの作成方法
データの品質については、過去の1年間で広く議論されてきましたデータ契約、データ製品、データ監視ツールの採用が増えていることは、データの専門家たちの取り組みを示しています
データ駆動型の世界で理解すべき重要な統計的アイデア4つ
2023年にデータリテラシーを持つためには、サンプリング、不確実性、AI、機械学習、そして統計的な主張の解釈といった基本的な概念が必要です
大規模な言語モデルにおけるコンテキストに基づく学習アプローチ
言語モデリング(LM)は、単語のシーケンスの生成的な尤度をモデル化することを目指し、将来の(または欠損している)トークンの確率を予測します言語モデルは自然言語処理の世界を革新しました...
もし、口頭および書面によるコミュニケーションが人間の知能を発展させたのであれば… 言語モデルは一体どうなっているのでしょうか?
人間の知能は、その非凡な認知能力によって、他の種に比べて比類のない存在ですこの知的優位性の原動力は、言語の出現に遡ることができます...
テキストブック品質の合成データを使用して言語モデルをトレーニングする
マイクロソフトリサーチは、データの役割についての現在進行中の議論に新たな燃料を加える論文を発表しました具体的には、データの品質と合成データの役割に触れています
3つの季節性のタイプとその検出方法
季節性は、時系列を構成する主要な要素の1つです季節性は、一定の期間で繰り返され、似た強度で発生する系統的な動きを指します季節変動は…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.