Learn more about Search Results prompt engineering - Page 3

「LLMsとRAGを組み合わせることによる拡張」

私はVoAGIについてさまざまな技術トピックについて何度もブログを書いてきました特にAmazon SageMaker上での機械学習(ML)モデルのホスティングに関してはより多くの記事を執筆してきました最近では興味を持ったのは…

「LLMファインチューニングにおけるPEFTテクニック」

イントロダクション 言語モデルまたはLLM(Language models)は、自然言語処理の世界を席巻しています。これらは人間に似たテキストを生成し、自然言語入力に対して理解し応答するために設計された強力なAIシステムです。基本的に、彼らは人間の言語理解と生成を模倣することを目指しています。LLMの微調整の複雑さを理解し、この分野を変革している革新的なPEFT(Prompt Engineering and Fine Tuning)技術を探索する旅に出かけましょう。 学習目標: 言語モデルの微調整の概念を理解する。 PEFT技術とその意義を理解する。 効率的な係数の選択のための技術を探索する。 PEFT技術の理解 まず、頭字語「PEFT」の解読を試みましょう。PEFTはパラメータ効率的な微調整を表します。しかし、この文脈ではパラメータの効率性は何を意味し、なぜ重要なのでしょうか? 機械学習では、モデルは基本的には数多くの係数または重みを持つ複雑な数学方程式です。これらの係数はモデルの振る舞いを制御し、データから学習することが可能にします。機械学習モデルを訓練する際には、これらの係数を調整してエラーを最小化し正確な予測を行います。LLMの場合は、数十億のパラメータを持つ可能性がありますので、すべての係数を訓練中に変更するのは計算コストが高くメモリを消費することになります。 ここで微調整が登場します。微調整とは、事前に訓練されたモデルを特定のタスクに適応させるプロセスです。モデルは既に言語の基本的な理解力を持っていると仮定し、特定の領域での優れた性能を発揮するように調整することに焦点を当てます。 PEFTは、微調整のサブセットとしてパラメータの効率性を重要視しています。すべての係数を変更する代わりに、PEFTはそれらのサブセットを選択し、計算やメモリの要件を大幅に減らします。効率性が重要なFalcon 7Bのような大規模なモデルのトレーニングに特に有効なアプローチです。 トレーニング、微調整、プロンプトエンジニアリング:主な違い PEFTに深く入る前に、トレーニング、微調整、プロンプトエンジニアリングの違いを明確にしましょう。これらの用語はしばしば同義に使用されますが、LLMの文脈で特定の意味を持っています。 トレーニング:モデルがゼロから作成されるとき、トレーニングが行われます。これには、モデルのすべての係数や重みを調整してデータのパターンや関係性を学習する作業が含まれます。モデルに言語の基礎を教えるということです。 微調整:微調整では、モデルが既に言語の基本的な理解力を持っている(トレーニングによって達成されたもの)と仮定しています。特定のタスクやドメインにモデルを適応させるため、目的に合わせた調整が行われます。特定の仕事(例えば質問に答えることやテキストの生成など)において、教養のあるモデルを洗練させると考えてください。 プロンプトエンジニアリング:プロンプトエンジニアリングでは、LLMが望ましい出力を提供するための入力プロンプトや質問を作成します。求める結果を得るためにモデルとのインタラクション方法をカスタマイズすることです。 PEFTは、微調整フェーズで重要な役割を果たし、モデルの係数を選択的に変更して特定のタスクでの性能を向上させます。 係数の選択のためのLoRAとQLoRAの探索…

「プロンプトエンジニアリングに入るための5つの必須スキル」

「AIによって作成された最新の職種の1つであるプロンプトエンジニアに関連するニュースを見たことがない人はいないだろうこの役割は多岐にわたるスキルが求められることから、非常に重要視されているもし知らない場合、プロンプトエンジニアは専門のスペシャリストであり...」

「2023年のAIに関するガートナー・ハイプ・サイクル」

新しい生成AI技術の登場により、AIの景観が急速に進化したことについて掘り下げましょう

「環境持続可能性のために生成型AIのワークロードを最適化する」

「AWS上でのディープラーニングワークロードの持続可能性を最適化するためのガイダンスに追加するために、この投稿では生成AIワークロードに特化した推奨事項を提供します特に、ゼロからモデルをトレーニングする、追加データを使用してファインチューニングする(フルまたはパラメータ効率のテクニックを使用する)、Retrieval Augmented Generation(RAG)、およびプロンプトエンジニアリングの異なるカスタマイズシナリオに対する実用的なベストプラクティスを提供します」

「LLMプロンプティングにおける思考の一端:構造化されたLLM推論の概要」

スマートフォンやスマートホームの時代に、単なる指示に従うだけでなく、私たちと同様に複雑な論理を扱い、実際に考えるAIを想像してみてくださいまるでSFのように聞こえますね…

クローズドソース対オープンソース画像注釈

このブログでは、オープンソースとクローズドソースの画像注釈ツールを比較し、それがAIモデル開発者の生活を簡単かつ便利にする方法について述べています

「新しい生成AI基礎証明書」の発表

「私たちは、Ai+トレーニングの最新の認定コースであるGenerative AI Fundamentalsを発表できることを非常に喜んでいますこちらで提供される全てを探索してみてくださいその間に、以下の概要も必ずチェックしてくださいGenerative AI Fundamentalsコースでは、基本原則について掘り下げ、あなたに教えることです...」

大規模言語モデル(LLM)の微調整

この投稿では、事前学習されたLLMをファインチューニング(FT)する方法について説明しますまず、FTの重要な概念を紹介し、具体的な例を示して終わります

ReactとExpressを使用してChatGPTパワードおよび音声対応のアシスタントを構築する

現代の世界において、大規模な言語モデルがますます人気を集めるにつれて、それらを開発に使用する関心も高まっていますが、どこから始めれば良いかを理解することは常に容易ではありませんこの記事では、ChatGPT言語を活用したシンプルなチャットボットの構築方法について説明します...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us