Learn more about Search Results huggingface.co - Page 3
- You may be interested
- 「挑戦受けた:GeForce NOWが究極の挑戦と...
- ビデオスワップに会おう:対話型意味ポイ...
- 『分析チームとしての緊急性と持続可能性...
- 「AnimateDiffとは モデル特有の調整なし...
- 「カンチレバー対ChatGPT」 カンチレバー...
- 「単なる爬虫類以上:ブラックボックスモ...
- AIがYouTubeの多言語吹替を開始します
- 「PythonとSklearnを使用して4つのセント...
- 『あなた自身の個人用ChatGPT』
- フォトグラメトリとは何ですか?
- トレンドのAI GitHubリポジトリ:2023年11...
- 「最大AIパフォーマンス:最新のNVIDIA GP...
- スタンフォード大学の研究者が、大規模言...
- データから洞察力へ:KubernetesによるAI/...
- 「生成AIが飲食業界のビジネスをサポート...
LLMWareは、複雑なビジネスドキュメントを含む企業ワークフローに適した、生産用の微調整済みモデルであるRAG-Specialized 7BパラメータLLMを発表しました
先月、Ai BloksはエンタープライズグレードのLLMベースのワークフローアプリケーションを構築するための開発フレームワーク、llmwareのオープンソース発表を行いました。今日、Ai BloksはDRAGONシリーズ(Delivering RAG on …)として知られる7BパラメータLLMのリリースと共に、次世代のRAGフレームワークの提供に向けてさらなる大きな進展を遂げました。これらのLLMは、複雑なビジネスおよび法的文書に基づく事実に基づく質問応答の特定の目的で細かく調整され、ビジネスワークフロー向けに設計されています。 より多くの企業が自社独自の情報を使用してスケーラブルなRAGシステムを展開することを目指すにつれて、以下の複数のニーズが認識されています: LLMモデルを周囲のワークフロー機能(ドキュメントの解析、埋め込み、プロンプト管理、ソースの検証、監査追跡など)と統合する統一されたフレームワーク。 事実に基づく質問応答とビジネスワークフローに最適化された、高品質で小型の特化LLM。 オープンソースで費用対効果の高い、カスタマイズのための柔軟性とオプションを備えたプライベート展開。 これらのニーズに応えるため、LLMWareは、そのLLMWareのDRAGONモデルの7つをオープンソースで提供します。これらのモデルは、Hugging Faceリポジトリーにあり、すべてがエンタープライズ用のRAGワークフローにおいて強力なプロダクショングレードの準備が整ったリーディングの基本モデルをベースに細かく調整されています。 全てのDRAGONモデルは、llmware rag-instruct-benchmarkを用いて評価され、その完全なテスト結果と方法論はリポジトリ内のモデルと共に提供されています。それぞれのDRAGONモデルは、100のコアテスト質問の幅広いセットに対して中から高い精度を実現し、幻覚を防ぐための強い根拠を持ち、パッセージから質問に対する答えが得られない場合(「見つからない」分類など)を特定することができます。 DRAGONモデルファミリーは、他の2つのLLMWare RAGモデルコレクションであるBLINGとIndustry-BERTに加わります。 BLINGモデルは、開発者のノートパソコンで動作することが可能なGPU非必須のRAG専門の小型LLMモデル(1B〜3B)です。トレーニングの方法論が非常に似ているため、開発者はローカルのBLINGモデルから始め、本番でパフォーマンスを向上させるためにシームレスにDRAGONモデルに切り替えることができます。DRAGONモデルは、単一のエンタープライズグレードのGPUサーバー上でのプライベート展開を目的としており、企業は自社のセキュリティゾーンで安全かつプライベートにエンドツーエンドのRAGシステムを展開することができます。 このオープンソースのRAG専門モデルのスイートは、コアとなるLLMWare開発フレームワークとMilvusおよびMongo DBのオープンソースプライベートクラウドインスタンスとの統合を備えたエンドツーエンドのRAGソリューションを提供します。数行のコードで、開発者は数千のドキュメントの取り込みと解析、埋め込みベクトルのアタッチ、最新のLLMベースの生成推論の実行、証拠とソースの検証を自動化し、プライベートクラウドで実行することができます。場合によっては、単一の開発者のノートパソコンからさえ実行することができます。 AIブロックスのCEOであるダレン・オーベルストは、「私たちの信念は、LLM(低レイヤーマテリアル)が企業において新たな自動化ワークフローを可能にするということであり、私たちが提供するLLMWareのビジョンは、専門モデル、データパイプライン、すべての有効なコンポーネントを統合したオープンソースのフレームワークを通じて、企業が迅速にカスタマイズし、規模展開するためのLLMベースの自動化を実現することです。」と述べています。 詳細については、llmwareのgithubリポジトリを参照してください:www.github.com/llmware-ai/llmware.git。 モデルへの直接アクセスについては、llmwareのHuggingface組織ページをご覧ください:www.huggingface.co/llmware。
「Llama2とAmazon SageMakerを使用したLoRAのファインチューニングモデルのモデル管理」
ビッグデータとAIの時代において、企業は競争上の優位性を得るためにこれらの技術を利用する方法を常に探求しています現在、AIの中でも最も注目されている分野の一つが生成AIですそしてその理由は十分にあると言えます生成AIは創造性や可能性の限界を押し上げる強力な解決策を提供してくれます
「ローカルCPUで小規模言語モデルを実行するための7つの手順」
わずか7つの簡単な手順で、地元のCPUで小規模な言語モデルを実行する方法を発見しましょう
「Zephyr-7Bの内部:HuggingFaceの超最適化LLM、より大きなモデルを上回り続けている」
ZEPHYR-7Bは、AIコミュニティで非常に好評を得ている新世代の大型言語モデル(LLM)の1つですHugging Faceによって作成されたこのモデルは、効果的に最適化されたバージョンです...
潜在一貫性LoRAsによる4つのステップでのSDXL
潜在的一貫性モデル(LCM)は、ステーブルディフュージョン(またはSDXL)を使用してイメージを生成するために必要なステップ数を減らす方法です。オリジナルモデルを別のバージョンに蒸留し、元の25〜50ステップではなく4〜8ステップ(少ない)だけを必要とするようにします。蒸留は、新しいモデルを使用してソースモデルからの出力を再現しようとするトレーニング手順の一種です。蒸留されたモデルは、小さく設計される場合があります(これがDistilBERTや最近リリースされたDistil-Whisperの場合)または、この場合のように実行に必要なステップ数を減らします。これは通常、膨大な量のデータ、忍耐力、およびいくつかのGPUが必要な長時間かかる高コストのプロセスです。 それが今日までの現状でした! 私たちは、Stable DiffusionとSDXLを、まるでLCMプロセスを使用して蒸留されたかのように、速くする新しい方法を発表できることを喜ばしく思います!3090で7秒の代わりに約1秒、Macで10倍速くSDXLモデルを実行する、というのはどうですか?詳細は以下をご覧ください! 目次 メソッドの概要 なぜこれが重要なのか SDXL LCM LoRAsによる高速推論 品質の比較 ガイダンススケールとネガティブプロンプト 品質 vs. ベースのSDXL 他のモデルとのLCM LoRAs フルディフューザーズの統合 ベンチマーク 今日リリースされたLCM LoRAsとモデル ボーナス:通常のSDXL LoRAsとの組み合わせ LCM…
「AWS Inferentia2を使って、あなたのラマ生成時間を短縮しましょう」
Hugging Faceブログの前の投稿で、第2世代のAWS InferentiaアクセラレータであるAWS Inferentia2を紹介し、optimum-neuronを使用して、標準のテキストとビジョンタスクのためにHugging FaceモデルをAWS Inferentia 2インスタンス上で迅速に展開する方法を説明しました。 AWS Neuron SDKとのさらなる統合の一環として、🤗optimum-neuronを使用して、AWS Inferentia2上でテキスト生成のためのLLMモデルを展開することができるようになりました。 デモンストレーションには、Llama 2、ハブで最も人気のあるモデルの一つ、を選択するのが最も適しています。 Inferentia2インスタンスに🤗optimum-neuronをセットアップする おすすめは、Hugging Face Neuron Deep Learning AMI(DLAMI)を使用することです。DLAMIには、必要なライブラリが事前にパッケージ化されており、Optimum Neuron、Neuron Drivers、Transformers、Datasets、およびAccelerateも含まれています。 また、Hugging Face…
「KOSMOS-2:Microsoftによるマルチモーダルな大規模言語モデル」
イントロダクション 2023年はAIの年となりました。言語モデルから安定した拡散モデルの強化にSegMind APIを使うまで、AI技術は進化し続けています。その中で、Microsoftが開発したKOSMOS-2が注目を浴びています。これはマイクロソフトによって開発されたマルチモーダルの大規模言語モデル(MLLM)であり、テキストと画像の理解力において画期的な能力を発揮しています。言語モデルを開発することは一つのことですが、ビジョンモデルを作成することは別のことです。しかし、両方の技術を組み合わせたモデルを持つことは、さらなるレベルの人工知能を実現することになります。この記事では、KOSMOS-2の特徴と潜在的な応用について掘り下げ、AIと機械学習への影響を解説します。 学習目標 KOSMOS-2のマルチモーダル大規模言語モデルの理解 KOSMOS-2のマルチモーダルグラウンディングと参照表現生成の仕組みの学習 KOSMOS-2の現実世界での応用について洞察を得る KOSMOSを使ったColabでの推論の実行 この記事はデータサイエンスブログマラソンの一部として公開されました。 KOSMOS-2モデルの理解 KOSMOS-2はマイクロソフトの研究チームによる研究成果で、そのタイトルは「Kosmos-2: Grounding Multimodal Large Language Models to the World(KOSMOS-2:マルチモーダル大規模言語モデルのグラウンディング)」です。テキストと画像を同時に処理し、マルチモーダルデータとの相互作用を再定義することを目指して設計されたKOSMOS-2は、他の有名なモデルであるLLaMa-2やMistral AIの7bモデルと同様にトランスフォーマーベースの因果言語モデルのアーキテクチャを採用しています。 しかし、KOSMOS-2の特徴はその独自のトレーニングプロセスです。特殊なトークンとして画像内のオブジェクトへの参照を含むテキストである、GRITと呼ばれる巨大なデータセットでトレーニングされています。この革新的なアプローチにより、KOSMOS-2はテキストと画像の新たな理解を提供することができます。 マルチモーダルグラウンディングとは何ですか? KOSMOS-2の特徴的な機能の一つは、「マルチモーダルグラウンディング」の能力です。これは、画像のオブジェクトとその位置を記述するイメージキャプションを生成することができるという意味です。これにより、言語モデルにおける「幻覚」の問題を劇的に減少させ、モデルの精度と信頼性を向上させることができます。 この概念は、テキストを画像内のオブジェクトに特殊なトークンを通じて接続し、実質的にはオブジェクトを視覚的な文脈に結びつけるというものです。これにより幻覚が減少し、正確なイメージキャプションの生成能力が向上します。…
コア42とCerebrasは、Jais 30Bのリリースにより、アラビア語の大規模言語モデルの新たな基準を設定しました
CerebrasとCore42は、G42の企業であり、クラウドおよび生成AIのためのUAEベースの国家規模の活性化促進者である。彼らは、彼らのオープンソースのArabic Large Language Model(LLM)の最新かつ最も優れたバージョンであるJais 30Bの発売を発表しました。 Jais 30Bは、2023年8月にリリースされた前モデルのJais 13Bと比較して、大幅なアップグレードです。この新しいモデルは300億のパラメータを持ち、Jais 13Bの130億と比較して、大幅に大きなデータセットでトレーニングされました。これにより、言語生成、要約、およびアラビア語-英語翻訳の大幅な改善が実現しました。 Jais 30Bは、現在単一言語の英語モデルと同等であり、Foundation Modelの評価ではほとんどのオープンソースモデルを凌駕しています。このモデルは、アラビア語と英語の両方でより長く、より詳細な応答を生成することもできます。 Core42は、責任ある安全なAIの実践に取り組んでおり、Jais 30B開発チームは、バイアスやモデルによる憎悪や有害なコンテンツの生成を防止するためにプロセスとポリシーをさらに強化しました。 Jais 30BはHugging Faceでダウンロード可能です。 Hugging Face foundational model: https://huggingface.co/core42/jais-30b-v1 Hugging Face…
LLMのパフォーマンス比較ーRoberta、Llama 2、およびMistralを使用したLoraによる災害ツイート分析の詳細解説
<ul><li><a href=”https://www.voagi.com/efficient-adaptability-in-large-language-models-through-lowrank-matrix-factorization-lora-qlora-and.html”>LoRAを使用した災害ツイート分析のためのRoberta、Llama 2、Mistralの性能比較</a><ul><li><a href=”https://www.voagi.com/intro-to-social-network-analysis-with-networkx.html”>イントロダクション</a></li><li><a href=”https://www.voagi.com/3-ios-0days-infect-iphone.html”>使用されたハードウェア</a></li><li><a href=”/?s=Goals”>ゴール</a></li><li><a href=”/?s=Dependencies”>依存関係</a></li><li><a href=”https://www.voagi.com/pretrained-foundation-models-the-future-of-molecular-machine-learning-with-graphium-ml-library-and.html”>事前学習済みモデル</a><ul><li><a href=”/?s=RoBERTa”>RoBERTa</a></li><li><a href=”https://www.voagi.com/create-a-rag-pipeline-using-the-llama-index.html”>Llama 2</a></li><li><a href=”https://www.voagi.com/mistral-ai-sets-new-benchmarks-beyond-llama2-in-opensource-space.html”>Mistral 7B</a></li></ul></li><li><a href=”https://www.voagi.com/langchain-101-finetuning-llms-with-peft-lora-and-rl.html”>LoRA</a></li><li><a href=”https://www.voagi.com/llm-evals-setup-and-important-metrics-guide.html”>セットアップ</a></li><li><a href=”https://www.voagi.com/how-to-be-a-data-analyst-in-the-usa.html”>データの準備</a><ul><li><a href=”https://www.voagi.com/how-to-be-a-data-analyst-in-the-usa.html”>データの読み込み</a></li><li><a href=”https://www.voagi.com/apache-kafka-the-mission-critical-data-fabric-for-genai.html”>データ処理</a></li></ul></li><li><a href=”https://www.voagi.com/impact-of-language-models-on-medical-text-analysis.html”>モデル</a><ul><li><a href=”/?s=RoBERTa”>RoBERTa</a><ul><li><a href=”https://www.voagi.com/tips-to-use-prompt-engineering-for-text-classification.html”>分類タスクのためのRoBERTAチェックポイントの読み込み</a></li><li><a href=”https://www.voagi.com/langchain-101-finetuning-llms-with-peft-lora-and-rl.html”>RoBERTa分類器のためのLoRAセットアップ</a></li></ul></li><li><a href=”https://www.voagi.com/mistral-ai-sets-new-benchmarks-beyond-llama2-in-opensource-space.html”>Mistral</a><ul><li><a href=”https://www.voagi.com/mistral-ai-opensources-mistral-7b-a-versatile-language-model.html”>分類モデルのためのチェックポイントの読み込み</a></li><li><a…
「ヌガーで科学文書処理を高める」
イントロダクション 自然言語処理および人工知能の分野では、科学的なPDFなどの非構造化データソースから価値ある情報を抽出する能力がますます重要になっています。この課題に対処するため、Meta AIは「Nougat」または「Neural Optical Understanding for Academic Documents」と呼ばれる最先端のトランスフォーマーベースのモデルを導入しました。Nougatは、科学的なPDFを一般的なMarkdown形式に転写するために設計されたモデルであり、Lukas Blecher、Guillem Cucurull、Thomas Scialom、Robert Stojnicによって「Nougat: Neural Optical Understanding for Academic Documents」というタイトルの論文で紹介されました。 これにより、オプティカル文字認識(OCR)技術の画期的な変革が実現され、NougatはMeta AIの印象的なAIモデルの最新バージョンとなります。この記事では、Nougatの機能を探求し、そのアーキテクチャを理解し、このモデルを使用して科学的なドキュメントを転写する実践的な例を見ていきます。 学習目標 Meta AIの最新トランスフォーマーモデルであるNougatを理解する。 Nougatが前任であるDonutを基に開発され、ドキュメントAIに対する最先端アプローチが導入されていることを学ぶ。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.