Learn more about Search Results TensorFlow - Page 3

「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)

転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...

「最初のAIエージェントを開発する:Deep Q-Learning」

2. 全体像 3. 環境 初期の基礎 4. エージェントの実装 ニューラルアーキテクチャとポリシー 5. 環境への影響 仕上げ 6. 経験から学ぶ...

モデルインサイトの視覚化:ディープラーニングにおけるGrad-CAMのガイド

イントロダクション グラジエント重み付きクラスアクティベーションマッピングは、CNNでの意思決定を可視化し理解するためのディープラーニングのテクニックです。この画期的なテクニックはCNNが行った隠れた意思決定を明らかにし、不透明なモデルを透明なストーリーテラーに変えます。これは、ニューラルネットワークの注意を引く画像の本質をスポットライトで浮き彫りにする魔法レンズと考えてください。では、どのように機能するのでしょうか? Grad-CAMは、最後の畳み込み層の勾配を分析することで、特定のクラスの各特徴マップの重要性を解読します。 Grad-CAMはCNNを解釈し、予測を明らかにし、デバッグを支援し、パフォーマンスを向上させます。クラスの識別とローカル化はできますが、ピクセル空間の詳細の強調はありません。 学習目標 CNNベースのモデルでの解釈性の重要性を理解し、透明性と説明可能性を高めます。 Grad-CAM(Grad-CAM(グラジエント重み付きクラスアクティベーションマッピング))の基礎を学び、CNNの意思決定を視覚化し解釈するための技術を理解します。 Grad-CAMの実装手順に洞察を得て、イメージ中の重要な領域をモデルの予測のためにハイライトするためのクラス活性化マップを生成することを可能にします。 Grad-CAMがCNNの予測において理解と信頼を高める実世界の応用とユースケースを探索します。 この記事はData Science Blogathonの一部として公開されました。 Grad-CAMとは何ですか? Grad-CAMは、グラジエント重み付きクラスアクティベーションマッピングの略です。これは、ディープラーニング、特に畳み込みニューラルネットワーク(CNN)で使用される技術で、特定のクラスのネットワークの予測にとって重要な入力画像の領域を理解するために使用されます。 Grad-CAMは、複雑な高パフォーマンスのCNNモデルを理解することを可能にする技術であり、精度を損なうことなく可解釈性を提供します。 Grad-CAMは、アーキテクチャの変更や再トレーニングがなく、CNNベースのネットワークのための視覚的な説明を生成するクラス識別ローカリゼーション技術として特徴付けられています。この手法は、Grad-CAMを他の視覚化手法と比較し、クラスの識別力と高解像度の視覚的説明を生成することの重要性を強調します。 Grad-CAMは、CNNの最後の畳み込み層に流れるグラジエントを分析することで、画像の重要な領域をハイライトするヒートマップを生成します。 Grad-CAMは、最後の畳み込み層の特徴マップに関連する予測クラススコアの勾配を計算することで、特定のクラスの各特徴マップの重要性を判断します。 ディープラーニングにGrad-CAMが必要な理由 Grad-CAMは、ディープラーニングモデルの解釈性の重要性に対応するために必要です。これにより、さまざまなコンピュータビジョンタスクで提供する精度を損なうことなく、これらのモデルが予測に至る方法を視覚化し理解する手段が提供されます。 +---------------------------------------+ | | |…

Amazon SageMaker Studioで生産性を向上させる:JupyterLab Spacesと生成AIツールを紹介

「Amazon SageMaker Studioは、機械学習(ML)開発における広範なセットの完全に管理された統合開発環境(IDE)を提供していますこれには、JupyterLab、Code-OSS(Visual Studio Codeオープンソース)に基づいたCode Editor、およびRStudioが含まれていますそれは、データの準備から構築・トレーニングまでの各ステップのための最も包括的なツールのアクセスを提供します...」

「CNNにおけるアトラウス畳み込みの総合ガイド」

イントロダクション コンピュータビジョンの領域において、畳み込みニューラルネットワーク(CNN)は画像解析と理解の領域を再定義しました。これらの強力なネットワークは、画像分類、物体検出、セマンティックセグメンテーションなどのタスクにおいて革新的な進展を達成しました。これらは、医療、自動運転などのさまざまな分野での応用の基盤を築きました。 しかし、よりコンテキストに対応した堅牢なモデルの需要が増えるにつれて、伝統的なCNN内の畳み込みレイヤーは、包括的なコンテキスト情報のキャプチャにおいて制限を受けています。これは、計算量の増加に伴わずにネットワークがより広いコンテキストを理解する能力を向上させるための革新的な手法の必要性をもたらしました。 ここで紹介するのは、伝統的な畳み込みレイヤー内の常識を覆した、画期的なアプローチであるAtrous Convolutionです。Atrous Convolution(拡張畳み込み)は、計算量やパラメータを大幅に増やすことなく、ネットワークがより広いコンテキストをキャプチャする能力を実現することで、ディープラーニングの世界に新たな次元をもたらしました。 学習目標 畳み込みニューラルネットワークの基礎を学び、ビジュアルデータを処理して画像を理解する方法を理解する。 Atrous Convolutionが従来の畳み込み方法を改善する方法を理解し、画像内のより大きなコンテキストをキャプチャする能力を把握する。 DeepLabやWaveNetなど、Atrous Convolutionを使用するよく知られたCNNアーキテクチャを探索し、そのパフォーマンスを向上させる方法を確認する。 Atrous ConvolutionがCNN内での応用の手法やコードスニペットを通じて実践的な例を通して理解する。 この記事はデータサイエンスのブログマラソンの一環として公開されました。 CNNの理解:動作原理 畳み込みニューラルネットワーク(CNN)は、主に画像やビデオなどのビジュアルデータの分析に特化したディープニューラルネットワークの一種です。彼らは人間の視覚システムに触発され、ビジュアルデータ内のパターン認識において非常に効果的です。以下に詳細を示します: 畳み込みレイヤー: CNNは複数のレイヤーで構成されており、畳み込みレイヤーがその核となっています。これらのレイヤーは、学習可能なフィルタを入力データに適用して、画像からさまざまな特徴を抽出します。 プーリングレイヤー: 畳み込み後、プーリングレイヤーを使用して空間的な次元を削減し、畳み込みレイヤーによって学習された情報を圧縮することがよくあります。一般的なプーリング操作には、最大プーリングや平均プーリングなどがあり、表現のサイズを縮小しながら必要な情報を保持します。 活性化関数: 畳み込みおよびプーリングレイヤーの後には、非線形の活性化関数(ReLUなどの整流線形ユニット)が使用されます。これにより、ネットワークはデータ内の複雑なパターンや関係性を学習することができます。 全結合レイヤー:…

すべての開発者が知るべき6つの生成AIフレームワークとツール

この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください

「拡散を通じた適応学習:先進のパラダイム」

イントロダクション 教育と機械学習のダイナミックな風景において、適応学習を通じた拡散はパラダイムシフトを示しています。この高度なアプローチは、拡散の原則を利用して学習体験をカスタマイズし、個々の学習者のニーズとペースにシームレスに適応させます。この記事では、適応学習を通じた拡散の微妙な点、教育領域を横断するその応用、学習者や教育者にとって持つ変革的な影響について深く掘り下げていきます。 学習目標 教育と機械学習の文脈における適応学習を通じた拡散の主要な原則を理解する。 学習者モデル、チュータリングモデル、知識ドメインなど、適応学習アーキテクチャの主要なコンポーネントを探究する。 エドテック、企業研修、医療教育など、様々な領域での適応学習を通じた拡散の現実世界での応用について洞察を得る。 動的コンテンツの拡散、個別化された学習経路、リアルタイムフィードバックの拡散のための高度なコードスニペットの実装に関する知識を習得する。 学習者と教育者に対する適応学習を通じた拡散の変革的な影響、学習者の力を高め、教育者の効率を向上させる役割を認識する。 この記事はデータサイエンスブロガソンの一環として公開されました。 拡散を通じた適応学習の理解 拡散を通じた適応学習の核心は、教育モデルへの拡散プロセスの考えられた適用です。物理学と数学の根本的な概念である拡散は、粒子や情報のヴォーエージアイ(VoAGI)を通じた広がりを表します。教育の領域では、これは知識の知識の賢明な伝達と吸収を意味し、個々の学習者の独自の学習軌跡に合わせて調整します。 適応学習のアーキテクチャ 学習者モデル 適応学習アーキテクチャの核心は学習者モデルです。この動的なエンティティは、学習者の熟練度レベル、既存の知識、割り当てられた学習目標、好ましい学習スタイルなど、学習者の独自の属性を捉えます。学習者モデルは、各インタラクションごとに進化し適応して、最適な学習体験を提供するパーソナライズされた設計図として機能します。 既存の知識、割り当てられた目標、学習スタイル 既存の知識:この学習者モデルの側面は、学習者が既に知っていることを網羅します。前の知識を評価することで、システムは冗長性を回避し、既存のギャップを埋めるためにコンテンツを調整します。 割り当てられた目標:学習者に割り当てられた学習目標はもう一つの重要な側面です。これらの目標は基準となり、適応システムをガイドし、学習者固有の教育目標に合わせたコンテンツを編集します。 学習スタイル:学習者が情報を最も効果的に吸収する方法を理解することは重要です。学習スタイルは、視覚的、聴覚的、運動感覚など、個々の学習好みを含みます。適応学習アーキテクチャは、この情報を活用して、個別の学習スタイルに最適化された方法でコンテンツを提供します。 チュータリングモデル チュータリングモデルは、教育コンテンツの適応を担うインテリジェントなコアです。チュータリングモデルは、学習者モデルから得られた洞察を活用し、教育コンテンツの難易度、ペース、形式を動的に調整します。このモデルは高度なアルゴリズムを使用して、学習者の現在の熟練度と学習スタイルに適合する学習教材を提供し、より効果的な学習体験を促進します。 知識ドメイン 知識ドメインは、学習可能な科目全体を包括します。これはチュータリングモデルがコンテンツを抽出するための広範なリポジトリとなります。適応学習アーキテクチャは、知識ドメインから選択されたコンテンツが学習者の目標に合致するよう最適化し、教育の旅を改善します。 学習者への出力 適応学習アーキテクチャの最終的な出力は、個別の学習者に合わせたカスタマイズされた学習体験です。この出力には、学習者の理解と記憶力を最大化するためのカスタマイズされたレッスン、評価、フィードバックが含まれます。適応システムはリアルタイムの対話と学習者の変化するニーズに基づいて、この出力を継続的に改善します。…

「QLoRAを使ってLlama 2を微調整し、AWS Inferentia2を使用してAmazon SageMakerに展開する」

この記事では、パラメータ効率の良いファインチューニング(PEFT)手法を使用してLlama 2モデルを微調整し、AWS Inferentia2上でファインチューニングされたモデルを展開する方法を紹介します AWS Neuronソフトウェア開発キット(SDK)を使用してAWS Inferentia2デバイスにアクセスし、その高性能を活用しますその後、[…]の動力を得るために、大きなモデル推論コンテナを使用します

MLがDevOpsと出会うとき:MLOpsの理解方法

この記事では、機械学習とDevOpsの統合、モデルの管理、ベストプラクティス、成功した解決策について取り上げています

「2024年の包括的なNLP学習パス」

紹介 2023年は、バード、ジェミニ、そしてChatGPTのような強力な言語モデルの台頭により、自然言語処理(NLP)で画期的な進展がありました。これらの驚異は、単なるAIの進化の見事な快挙だけでなく、機械が前例のない正確さと流暢さで人間の言語を理解し生成できる新たな時代の始まりを意味しています。パーソナライズされたチャットボットからリアルタイム翻訳まで、NLPはテクノロジーと私たちとのインタラクションの方法を革新しています。これらのアプリケーションがますます普及するにつれて、NLPの習得は単なる技能ではなく、必要不可欠なものとなります。 これを念頭に置いて、2024年にNLPの専門家になるための6ヶ月間のステップバイステップの学習パスを作成しました。このNLPの学習パスでは、事前に知っておく必要のある事項から始めます。その後、月ごとに学習と実践が必要な内容を具体的にご案内いたします。 さあ、始めましょう! 2024年の包括的なNLP学習パス概要 Natural Language Processing (NLP)に興味はありますか?それなら、この学習パスがおすすめです!初心者でもわかりやすいように設計されており、6ヶ月でNLPの基礎を学ぶことができます。 何を学ぶことができますか? Month 1: Pythonと基本的な機械学習のスタート。NLPのための統計、確率、およびディープラーニングの概念を学びましょう。 Month 2 & 3: テキスト処理技術、単語埋め込み、PyTorchやTensorFlowなどのディープラーニングフレームワークのマスター。テキスト要約や機械翻訳の最初のプロジェクトを作成しましょう。 Month 4 & 5: BERTやGPT-3などの強力な事前学習モデルを発見しましょう。転移学習、プロンプトエンジニアリング、ファインチューニングの技術を学びましょう。大規模な言語モデルでアプリケーションを作成しましょう。 Month…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us