Learn more about Search Results RLHF - Page 3

「蒸留されたアイデンティティの傾向最適化(IPO)を用いて、より洗練されたチャットモデルを調整する」

アイデンティティポリシーオプティマイゼーション(IPO)の目標は、RLHFやDPOよりもトレーニングデータからの学習においてよりシンプルでより良く設計されています

AI2とワシントン大学の研究者が、LLMsの表面的な性質を明らかにし、チューニングフリーの新しい方法であるURIALを紹介した

ラージランゲージモデル(LLMs)は、人工知能(AI)やディープラーニングの分野での最近の革新です。GPT、PaLM、LLaMaなどのよく知られたLLMは、コンテンツの生成において非常に高いポテンシャルを示しています。質問応答やテキスト要約から言語翻訳やコード補完まで、これらのモデルは多くのことができます。ChatGPTを含むこれらのモデルは、広範な非監督テキストコーパスでの事前トレーニングを経ています。しかし、最近の研究は、従来のファインチューニングの採用方法が以前に考えられていたほど重要ではない可能性があると示唆しています。 オープンドメインのAIアシスタントとしての基本LLMの改善プロセスであるアライメントチューニングは業界標準と認められています。これには、人間のフィードバックからの強化学習(RLHF)や監視付きファインチューニング(SFT)が含まれます。この標準は、LIMAという研究によって問われ、SFTのためのわずか1,000のサンプルでも意味のあるアライメントパフォーマンスを達成することができると示されました。 LIMAが提案したスーパーフィシャルアライメント仮説では、基本LLMの振る舞いを根本的に変えるのではなく、特定のデータ形式を選択するようにトレーニングすることで、アライメントチューニングが行われる可能性があります。これにより、わずかな例でも高品質なアライメントモデルが監視付きファインチューニングによって生成されることが示されました。 スーパーフィシャルアライメント理論に確かな支持を見つけるための研究が不十分であるため、Allen Institute for Artificial Intelligenceおよびワシントン大学の研究チームは、最近の論文でアライメントチューニングの広く使用されている技術に取り組み、基本LLMを有用なオープンドメインのAIアシスタントにする方法を提案しています。選好チューニングは人間のフィードバックからの強化学習によって実現され、指導学習は監視付きファインチューニングによって実現されています。 チームは、基本LLMとそのアライメントされたバージョン(例:Llama-2およびLlama-2-chat)のトークン分布の変化を調査し、アライメント調整の影響を研究しました。彼らは、基本LLMとそのアライメントされたバージョンが上位ランクされたトークンを共有し、ほとんどのトークン位置でデコーディングにおいてほぼ同じパフォーマンスを発揮することを発見しました。ディスコースマーカーやセーフティディスクレイマーなどのスタイルトークンは、最も分布の変動を経験しています。この研究は、アライメント調整が主にAIアシスタントの言語スタイルを同化することに焦点を当てており、基本LLMがユーザーの問い合わせに応えるために必要な情報を提供しているという仮説の説得力のある証拠を提供しています。 チームはまた、SFTやRLHFなしで基本LLMをどの程度アラインできるかという研究トピックを提示しました。彼らは、URIAL(調整を必要としないLLMとコンテキスト内アライメント)というアライメント技術を提案しました。わずか3つの連続スタイルの例とシステムのプロンプトだけで、URIALは基本LLMとのコンテキスト内学習(ICL)のみを通じて効果的なアラインメントを達成します。 チームは、Mistral-7b-Instruct(SFTで調整されたLLM)やSFT+RLHF(Llama-2-70b-chat)でアラインされたLLMsと同等またはそれ以上のパフォーマンスを提供するURIALを持つ基本LLMの詳細で理解しやすい分析を提供する、just-eval-instructと呼ばれる一連のインスタンスで、チューニングフリーおよびチューニングベースのアライメント戦略のギャップを劇的に縮小することが示されました。 結論として、評価結果は浅いアライメントチューニングを強調し、基本LLMの言語スタイルの導入と既存の知識に委ねられることを示しています。

「2023年のトップ8のAIトレンド:年間レビュー」

葉っぱが金色に変わり、12月の寒さが広がる中、人工知能の領域で目覚ましい進歩が見られた今年を振り返る時が来ました。2023年は単なる進歩の年ではありませんでした。それはトライアンフの年であり、AIが成し遂げられる限界が繰り返し押し広げられ、再定義された年でした。LLM(大規模言語モデル)の能力における画期的な進展から、前例のないほど世界とのナビゲーションや相互作用が可能な自律エージェントの登場まで、この年はこの変革的な技術の無限の可能性を示すものでした。 この包括的な探求の中で、私たちは2023年のAIを定義した8つの主要なトレンドについて掘り下げ、産業を再構築し、未来を革命化する革新を明らかにしていきます。だから、AI愛好家の皆さん、私たちは技術史の記録に永遠に刻まれる一年についての旅に出発です。 RLHFとDPOの微調整 2023年は、大規模言語モデル(LLM)の能力を向上させるための重要な進展が見られました。2つの主要なアプローチが登場しました: 人間のフィードバックに基づく強化学習(RLHF):この手法は、人間のフィードバックを活用してLLMの学習プロセスをガイドし、持続的な改善と進化するユーザーのニーズや好みに対応させることができます。このインタラクティブなアプローチにより、LLMは複雑または主観的な領域において微妙な理解力と意思決定能力を開発することができます。 直接的な選好最適化(DPO)::DPOはよりシンプルな代替手法であり、明示的な強化信号を必要とせずにユーザーの選好に直接最適化します。このアプローチは効率性とスケーラビリティを重視し、より速い適応と展開を必要とするアプリケーションに最適です。そのすっきりした性格により、ユーザーフィードバックに基づいてLLMの振る舞いを迅速に調整することができ、進化する好みに合わせることができます。 RLHFとDPOはLLMの開発における重要な進展を表していますが、既存の微調整手法を置き換えるのではなく、補完するものです: 事前学習:大規模なテキストとコードのデータセットを用いてLLMを訓練し、一般的な言語理解能力を学習させること。 微調整:特定のタスクまたはデータセットに基づいてLLMをさらに訓練し、特定のドメインやアプリケーションに適した能力を調整すること。 マルチタスク学習:LLMを複数のタスクに同時に訓練することで、共有表現を学習し、各タスクのパフォーマンスを向上させること。 LLMの効率性に対処する LLMの能力が向上するにつれて、計算上の制約とリソースの限界が重要な懸念事項となりました。その結果、2023年の研究はLLMの効率性の向上に焦点を当て、以下のような技術の開発をもたらしました: FlashAttention:この革新的なアテンションメカニズムは、LLMの計算コストを大幅に削減します。これにより、より速い推論と訓練が可能になり、LLMをリソースに制約のある環境でより実用的に利用し、実世界のアプリケーションに統合することができるようになります。 LoRA および QLoRA:LoRAやQLoRAなどの手法は、2023年にも提案された軽量かつ効率的なLLMの微調整方法を提供します。これらの手法は、既存のLLMアーキテクチャに追加された小さなモジュールであるアダプターに依存し、再トレーニングすることなくカスタマイズを可能にします。これにより、著しい効率の向上、より速い展開時間、さまざまなタスクへの適応性の向上が実現されます。 これらの進展は、効率的なLLMへの需要の増大に対応し、この強力な技術への広範な導入の道を開き、結果としてこの技術へのアクセスを民主化することにつながります。 検索補完生成(RAG)の浸透 純LLMは巨大な可能性を秘めていますが、それらの正確性と実証的根拠に関する懸念は依然として存在しています。検索補完生成(RAG)は、既存のデータや知識ベースとLLMを組み合わせることで、これらの懸念に対処する有望な解決策として登場しました。このハイブリッドアプローチにはいくつかの利点があります: エラーの減少:外部情報から事実情報を取り込むことにより、RAGモデルはより正確で信頼性のある出力を生成することができます。 拡張性の向上:RAGモデルは純LLMに必要な大規模なトレーニングリソースの必要性を排除し、大規模なデータセットに適用することができます。 低コスト:既存の知識リソースを利用することにより、LLMのトレーニングおよび実行に関連する計算コストを削減することができます。 これらの利点により、RAGは検索エンジン、チャットボット、コンテンツ生成など、さまざまなアプリケーションにおける貴重なツールとして位置付けられています。 自律エージェント…

一緒にAIを学ぶ – Towards AI コミュニティニュースレター第4号

おはようございます、AI愛好者の皆さん! 今号では、Activeloopと共同で取り組んでいる大規模な言語モデル(LLM)のパフォーマンス向上に関する新しいビデオを共有します このビデオではさまざまな…

「大規模言語モデルの微調整方法:ステップバイステップガイド」

2023年、アルパカ、ファルコン、ラマ2、およびGPT-4のような大規模言語モデル(LLM)の台頭は、人工知能の民主化の傾向を示しています

ChatGPTの初めての記念日:AIインタラクションの未来を変える

私たちの包括的な記事で、ChatGPTの1年間の旅とオープンソースのLarge Language Models(LLMs)の進化を探求してください技術の進歩、産業への応用、医療への影響、そしてAIの未来についての洞察を深く掘り下げますまた、OpenAIの噂されるQ*モデルについても触れます

詳細に説明されたLlama 2:Metaの大型言語モデル!

MetaのLlama 2についてもっと知りたいですか?ここには基礎から高度な仕様まで、すべてを網羅した初心者向けガイドがあります

スターリング-7B AIフィードバックからの強化学習によるLLM

UCバークレーの研究チームが、オープンソースの大規模言語モデル(LLM)であるStarling-7Bを導入しています。このモデルは人工知能フィードバック(RLAIF)からの強化学習を使用し、最新のGPT-4ラベル付きランキングデータセットであるNectarの力を活用しています。洗練された報酬トレーニングとポリシーチューニングパイプラインを組み合わせたStarling-7B-alphaは、言語モデルの性能において新たな基準を打ち立て、MT-Benchを除くすべてのモデルをしのぐ性能を発揮しています(ただし、OpenAIのGPT-4とGPT-4 Turboには及ばない)。 強化学習の可能性 教師あり微調整はチャットボットシステム開発において効果を示していますが、人間のフィードバックからの強化学習(RLHF)またはAIフィードバック(RLAIF)の可能性は限定的に調査されてきました。Zephyr-7BやNeural-Chat-7Bのような既存のモデルは、主導的な微調整(SFT)モデルと比較してRLHFの潜在能力を十分に示していませんでした。 この問題に対処するため、研究チームはNectarを導入しました。これは、チャットに特化した高品質なランキングデータセットであり、183,000のプロンプトと3,800,000のペアワイズ比較からなります。このデータセットはRLHFの研究をより詳細に行うことを目的とし、さまざまなモデルから収集されたさまざまなプロンプトを提供しています。 報酬モデルであるStarling-RM-7B-alphaおよびファインチューンされたLLMであるStarling-LM-7B-alphaのHuggingFaceでのリリースは、オープンソースAI研究の重要な進展を示しています。このモデルのMT-Benchスコアは、7.81から印象的な8.09に向上し、チャットボットの助けになる度合いを測るAlpacaEvalの向上も88.51%から91.99%に大幅に改善されました。 他にも読む: 強化学習とは何か、そしてそれはどのように機能するのか(2023年) モデルの評価 Starling-7Bの評価には独自の課題があります。このLLMは、RLHF後の助けや安全性の機能が向上していることを示すMT-BenchおよびAlpacaEvalスコアの改善が証明されています。ただし、知識ベースの質問応答や数学、コーディングに関連する基本的な機能は一貫しているか、わずかな回帰を経験しています。 直接チャットや匿名の比較のためにLMSYSチャットボットアリーナに組み込まれることで、人間の選好をテストするプラットフォームが提供されます。評価はまた、チャットモデルのベンチマークとしてのOpenLLMリーダーボードの使用における制限を強調し、Alpaca EvalとMT-Benchによるニュアンスのある評価の重要性を強調しています。 合成優先データのGoodhartの法則 考慮すべき重要な点は、合成された優先データのGoodhartの法則です。より高いMT-Benchスコアは、GPT-4による改善されたモデルの性能を示していますが、それが必ずしも人間の選好と相関するわけではありません。RLHFは主に応答スタイルを向上させることに寄与しており、特に助けや安全性の側面でスケーリングオンラインRL方法のポテンシャルを示しています。 制限事項 Starling-7Bは優れた性能を持っていますが、推論や数学に関わるタスクには苦労しています。また、ジェイルブレイキングのプロンプトへの感受性や出力の冗長さなどの制限も認識されています。研究チームは改善のためにコミュニティとの協力を求めており、RLHFを使用したオープンデータセット、報酬モデル、言語モデルの向上に取り組んでいます。 私たちの意見 RLAIFアプローチと綿密なデータセット作成を備えたStarling-7Bは、言語モデルにおける強化学習のポテンシャルを示すものです。課題や制約はまだ残っていますが、改善への取り組みと大規模なコミュニティとの協力により、Starling-7BはAI研究の進展する風景において輝く存在となっています。RLHFメカニズムの洗練とAI安全性研究の最前線への貢献について、さらなるアップデートをお楽しみに。

「DreamSyncに会ってください:画像理解モデルからのフィードバックを用いてテキストから画像の合成を改良する新しい人工知能フレームワーク」

カリフォルニア大学南部、ワシントン大学、バール・イラム大学、およびGoogle Researchの研究者は、人間の注釈、モデルアーキテクチャの変更、または強化学習の必要性を排除して、拡散ベースのテキストから画像への変換(T2I)モデルにおける整列と美的魅力の向上の問題に取り組むDreamSyncを紹介しました。これは、候補画像を生成し、Visual Question Answering(VQA)モデルを使用して評価し、テキストから画像へのモデルを微調整することにより、その目的を達成しています。 以前の研究では、TIFAなどのVQAモデルを使用してT2I生成を評価することが提案されていました。 TIFAでは、4Kのプロンプトと25Kの質問を使用して、12のカテゴリにわたる評価を実施できます。 SeeTrueやRLHFなどのトレーニング関連手法やトレーニングアダプタなどは、T2Iの整列に取り組んでいます。 SynGenやStructuralDiffusionなどのトレーニングフリーテクニックは、整列の推論を調整します。 DreamSyncは、特定のアーキテクチャやラベル付きデータに依存せずに、ユーザーの意図と美的な魅力に対する忠実度を向上させるT2Iモデルの課題に取り組むためのモデル非依存のフレームワークを採用しています。ビジュアル-言語モデル(VLM)を利用して生成された画像と入力テキストとの相違点を特定するモデル非依存のフレームワークを導入しています。この方法では、複数の候補画像を作成し、VLMを使用して評価し、T2Iモデルを微調整します。 DreamSyncはベースラインの手法を上回る画像の整列を提供し、さまざまな画像特性を向上させることができ、整列改善に限定されない応用範囲を持っています。 DreamSyncは、VLMからのフィードバックを使用してT2I生成の整列を行うためのモデル非依存のフレームワークを採用しています。このプロセスでは、プロンプトから複数の候補画像を生成し、それらをテキストの忠実度と画像の美的魅力のために専用のVLMで評価します。 VLMのフィードバックによって選択された最良の画像は、収束するまで反復してT2Iモデルを微調整するために使用されます。また、反復的なブートストラッピングを導入し、VLMを教師モデルとして使用して、T2Iモデルのトレーニングのためのラベルのないデータをラベル付けします。 DreamSyncは、SDXLとSD v1.4のT2Iモデルの両方を向上させ、SDXLの3つのイテレーションでは、TIFAで忠実度が1.7ポイントおよび3.7ポイント向上しました。ビジュアルの美的感覚も3.4ポイント向上しました。DreamSyncをSD v1.4に適用すると、TIFAで忠実度が1.0ポイント向上し、絶対スコアが1.7ポイント増加し、美的感覚が0.3ポイント向上します。比較研究では、DreamSyncは整列においてSDXLを上回り、より適切なコンポーネントを持つ画像と3.4個の正しい回答を生成します。それはTIFAとDSGのベンチマークで視覚的な忠実度を妥協することなく優れたものを達成し、反復による徐々の改善を示しています。 結論として、DreamSyncは難しいT2Iベンチマークで評価された多目的なフレームワークであり、配布内および配布外の設定の両方で整列と視覚的魅力の重要な改善を示しています。このフレームワークは、ビジョン-言語モデルからの二重フィードバックを組み込んでおり、人間の評価と好み予測モデルによって検証されています。 DreamSyncの将来の改善点には、ミスアライメントの特定のための詳細なアノテーション(バウンディングボックスなど)を使用したフィードバックの作成が含まれます。各イテレーションでプロンプトを調整することにより、テキストから画像への合成において特定の改善を目指します。言語構造と注意マップの探求により、属性-オブジェクトの結びつきを向上させることを目指しています。人間のフィードバックで報酬モデルをトレーニングすることで、生成された画像をユーザーの意図に合わせることができます。DreamSyncの応用範囲を他のモデルアーキテクチャに拡大し、パフォーマンスの評価および多様な設定での追加の研究を行うことは、現在の調査の領域です。

「生成AIのキーワードを解説する」

この記事では、生成AIに重要なキーワードを紹介し、説明しますさらに学習するための追加のリソースへのリンクも提供されます

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us