Learn more about Search Results OAuth - Page 3
- You may be interested
- スタンフォード大学研究者が提案するMAPTr...
- なぜNASAが国家の秘密を月に送っているのか
- マイクロソフトのボスは、AIが支配するこ...
- 人工知能を規制するための競争
- 「研究者がChatGPTを破った方法と、将来の...
- テキストブック品質の合成データを使用し...
- イメージセグメンテーション:詳細ガイド
- 「共感を人工的に作り出す」
- 「Mini-DALLE3と出会おう:大規模な言語モ...
- 「#30DayMapChallenge」の私の2週目」
- 顧客の生涯価値をモデリングする方法:良...
- EDIとは何ですか?電子データ交換について
- 「データの成熟度ピラミッド:レポートか...
- 「Google Bardの拡張機能を無料で使用する...
- 画像認識におけるディープラーニング:技...
「Amazon SageMakerとSalesforce Data Cloudの統合を使用して、SalesforceアプリをAI/MLで強化しましょう」
この投稿は、Salesforce Einstein AIの製品ディレクターであるダリル・マーティスと共同執筆されたものですこれは、Salesforce Data CloudとAmazon SageMakerの統合について議論するシリーズの2回目の投稿です第1部では、Salesforce Data CloudとEinstein StudioのSageMakerとの統合が企業が安全にSalesforceデータにアクセスできるようにする方法を示しています
「LangchainとOpenAIを使用したGoogleドキュメントのためのチャットボット」
イントロダクション この記事では、OpenAIとLangchainを使用してGoogleドキュメント用のチャットボットを作成します。では、なぜ最初にこれを行う必要があるのでしょうか?Googleドキュメントの内容をOpenAIにコピー&ペーストするのは手間がかかります。OpenAIには文字トークンの制限があり、特定の情報しか追加できません。したがって、スケールで実行するか、プログラムで実行する場合は、ライブラリのヘルプが必要です。そこで、Langchainが登場します。LangchainをGoogleドライブとOpenAIと接続することで、製品ドキュメント、研究ドキュメント、または会社が使用している内部の知識ベースなど、ドキュメントを要約し関連する質問をすることでビジネスへの影響を創出することができます。 学習目標 Langchainを使用してGoogleドキュメントのコンテンツを取得する方法を学ぶことができます。 GoogleドキュメントのコンテンツをOpenAI LLMと統合する方法を学ぶことができます。 ドキュメントのコンテンツを要約し、関連する質問をする方法を学ぶことができます。 ドキュメントに基づいて質問に答えるチャットボットを作成する方法を学ぶことができます。 この記事は、Data Science Blogathonの一部として公開されました。 ドキュメントの読み込み 始める前に、Googleドライブにドキュメントを設定する必要があります。ここで重要なのは、Langchainが提供するドキュメントローダーであるGoogleDriveLoaderです。これを使用して、このクラスを初期化し、ドキュメントIDのリストを渡すことができます。 from langchain.document_loaders import GoogleDriveLoader import os loader = GoogleDriveLoader(document_ids=["あなたのドキュメントID"], credentials_path="credentials.jsonファイルへのパス") docs…
MFAバイパス攻撃に対する懸念が高まっています
サイバー犯罪者は、マルチファクタ認証を迂回するために特別に作成された攻撃をますます使用しています
「はい!OpenTelemetryはシステムのセキュリティを確保するための重要な要素です」
「OTelがシステムのセキュリティに果たす重要な役割や、OTelがテレメトリデータを安全に処理する方法、そしてOTelのベストプラクティスについて探求しましょう」
「データサイエンスを使って、トップのTwitterインフルエンサーを特定する」
はじめに Twitter上のインフルエンサーマーケティングの重要性は無視できません。特にビジネスにとっての利益に関しては言うまでもありません。この記事では、データサイエンスとPythonを使用して、トップのTwitterインフルエンサーを見つけるという魅力的なコンセプトを探求します。この技術を用いることで、ビジネスはTwitter上で賢明な選択をし、報酬を得ることができます。科学的な手法とPythonの能力を活用することで、ビジネスは、広範なブランド露出とエンゲージメントをもたらすことができるインフルエンサーを特定する力を得るのです。 この記事では、インフルエンサーマーケティングに関するさまざまなトピックを取り上げています。それには、インフルエンサーの選択要因、Twitterデータの収集と整理、データサイエンス技術を用いたデータの分析、およびインフルエンサーの評価と順位付けにおける機械学習アルゴリズムの活用などが含まれます。 学習目標 この記事の目的は、読者が特定の学習目標を達成することです。この記事を読み終えることで、読者は以下のことができるようになります: Twitter上のインフルエンサーマーケティングの重要性とビジネスへの利益を理解する。 データサイエンスとPythonを使用して適切なインフルエンサーを見つける方法についての知識を得る。 Twitter上でインフルエンサーを特定する際に考慮すべき要素や側面を学ぶ。 Pythonと関連するツールを使用してTwitterデータを収集し整理する技術を習得する。 Pandasなどのデータサイエンス技術やPythonライブラリを使用してTwitterデータを分析するスキルを開発する。 インフルエンサーの特定と順位付けにおいて機械学習アルゴリズムの使用方法を探索する。 関連するメトリクスと質的要素に基づいてインフルエンサーを評価する技術をマスターする。 Twitter上でインフルエンサーを特定する際の制約と課題を理解する。 実際のインフルエンサーマーケティングの事例から洞察を得て、重要な教訓を学ぶ。 Pythonを使用して自身のビジネスに最適なインフルエンサーを特定するために獲得した知識とスキルを適用する。 この記事はData Science Blogathonの一環として公開されました。 プロジェクトの概要 このプロジェクトの目的は、Twitter上のインフルエンサーマーケティングの複雑な領域をナビゲートするために、読者に必要なスキルと知識を提供することです。インフルエンサーの選択基準の確立、関連するTwitterデータの収集と準備、データサイエンス技術を用いたデータの分析、および機械学習アルゴリズムを用いたインフルエンサーの評価と順位付けなど、いくつかの要素を詳しく調べます。この記事で提供される体系的アプローチにより、読者は貴重な洞察と実践的な戦略を身につけて、マーケティング活動を効率化することができます。 この記事を通じて、読者はインフルエンサーの特定プロセスとそのTwitter上でのブランドの可視性とエンゲージメントへの重要な役割について、深い理解を得ることができます。プロジェクトの最後には、読者は自身のビジネスに新たに獲得した知識を自信を持って適用し、Twitter上の影響力のある人物を活用してマーケティング戦略を最適化し、目標とするオーディエンスと効果的につながることができるのです。 問題の提示 Twitter上でビジネスにとって関連性のある影響力のあるインフルエンサーを特定することは、複雑な問題です。ビジネスは、膨大な量のデータと絶えず変化するソーシャルメディアの環境の中で、適切なインフルエンサーを見つけることに苦労することがよくあります。また、真のエンゲージメントと信頼性を持つインフルエンサーを特定することもさらに困難です。 ビジネスは、ターゲットオーディエンスとブランドの価値と一致するインフルエンサーを見つけるために、大量のTwitterデータを手動で選別する際に障害に直面します。インフルエンサーの真正性と影響力を判断することは、主観的で時間のかかる作業となることがあります。これらの課題は、チャンスの逃失と効果のないパートナーシップにつながり、リソースの浪費やマーケティング戦略の妥協を招くことがよくあります。…
「マーケティングからデータサイエンスへのキャリアチェンジ方法」
イントロダクション データの指数関数的な成長とデータに基づく意思決定の必要性により、マーケティングとデータサイエンスの交差点はますます重要になっています。多くの専門家がデータサイエンスへのキャリア転換を考えています。この記事では、マーケティングからデータサイエンスへの成功した転換をガイドします。 スキルギャップの評価 マーケティングからデータサイエンスへのキャリア転換を考える際には、これら2つの分野のスキルギャップを評価することが重要です。自分のスキルが一致する領域と追加の知識が必要な領域を理解することは、データサイエンティストへの成功への道筋を描くのに役立ちます。 データサイエンティストの役割に必要な主要なスキルと知識 データサイエンティストには、データ分析、プログラミング、統計、機械学習の専門知識など、多様なスキルセットが必要です。以下に、必要なすべてのスキルのリストを示します: 技術的なスキル PythonやRなどのプログラミング言語またはデータ言語 線形回帰やロジスティック回帰、ランダムフォレスト、決定木、SVM、KNNなどの機械学習アルゴリズム SAP HANA、MySQL、Microsoft SQL Server、Oracle Databaseなどのリレーショナルデータベース 自然言語処理(NLP)、光学文字認識(OCR)、ニューラルネットワーク、コンピュータビジョン、ディープラーニングなどの特殊スキル RShiny、ggplot、Plotly、Matplotlitなどのデータ可視化能力 Hadoop、MapReduce、Sparkなどの分散コンピューティング 分析スキル IBM Watson、OAuth、Microsoft AzureなどのAPIツール 実験とA/Bテスト 回帰、分類、時系列分析などの予測モデリングと統計概念 ドメイン知識…
Google Cloud上のサーバーレストランスフォーマーパイプラインへの私の旅
コミュニティメンバーのマクサンス・ドミニシによるゲストブログ投稿 この記事では、Google Cloudにtransformers感情分析パイプラインを展開するまでの道のりについて説明します。まず、transformersの簡単な紹介から始め、実装の技術的な部分に移ります。最後に、この実装をまとめ、私たちが達成したことについてレビューします。 目標 Discordに残された顧客のレビューがポジティブかネガティブかを自動的に検出するマイクロサービスを作成したかったです。これにより、コメントを適切に処理し、顧客の体験を向上させることができます。たとえば、レビューがネガティブな場合、顧客に連絡し、サービスの品質の低さを謝罪し、サポートチームができるだけ早く連絡し、問題を修正するためにサポートすることができる機能を作成できます。1か月あたり2,000件以上のリクエストは予定していないため、時間と拡張性に関してはパフォーマンスの制約を課しませんでした。 Transformersライブラリ 最初に.h5ファイルをダウンロードしたとき、少し混乱しました。このファイルはtensorflow.keras.models.load_modelと互換性があると思っていましたが、実際にはそうではありませんでした。数分の調査の後、ファイルがケラスモデルではなく重みのチェックポイントであることがわかりました。その後、Hugging Faceが提供するAPIを試して、彼らが提供するパイプライン機能についてもう少し調べました。APIおよびパイプラインの結果が素晴らしかったため、自分自身のサーバーでモデルをパイプラインを通じて提供することができると判断しました。 以下は、TransformersのGitHubページの公式の例です。 from transformers import pipeline # 感情分析のためのパイプラインを割り当てる classifier = pipeline('sentiment-analysis') classifier('We are very happy to include…
Pythonプロジェクトのセットアップ:パートV
経験豊富な開発者であろうと、🐍 Pythonを始めたばかりであろうと、堅牢で保守性の高いプロジェクトの構築方法を知ることは重要ですこのチュートリアルでは、...のプロセスを案内します
データアナリストからデータサイエンティストへのキャリアチェンジの方法は?
人々は常にデータを扱っており、データアナリストは専門知識を身につけた後、よりチャレンジングな役割を求めています。データサイエンティストは、最も収益性の高いキャリアオプションの1つとされています。スキルセットの拡大が必要ですが、いくつかの教育プラットフォームが変化に有益な洞察を提供しています。多くのデータアナリストが成功して転身していますし、あなたも次の転身者になることができます! 以下のステップは、データサイエンティストとしてのキャリアをスタートさせる際に、企業の成長に貢献し、専門知識を増やすのに役立ちます: スキルギャップの評価 データサイエンティストの役割に必要な基本的なスキルと知識 データサイエンティストはデータを実験する必要があるため、新しいアイデアや研究を開発するマインドセットが重要です。過去の実験のミスを分析する能力も同様に重要です。これに加えて、以下のような技術スキルと知識が求められます: 技術スキル: PythonやRなどのプログラミング言語やデータ言語 線形回帰やロジスティック回帰、ランダムフォレスト、決定木、SVM、KNNなどの機械学習アルゴリズム SAP HANA、MySQL、Microsoft SQL Server、Oracle Databaseなどのリレーショナルデータベース Natural Language Processing(NLP)、Optical Character Recognition(OCR)、Neural networks、computer vision、deep learningなどの特殊なスキル RShiny、ggplot、Plotly、Matplotlitなどのデータ可視化能力 Hadoop、MapReduce、Sparkなどの分散コンピューティング 分析スキル:…
Amazon SageMaker Data WranglerのSnowflakeへの直接接続でビジネスインサイトまでの時間を短縮してください
Amazon SageMaker Data Wranglerは、1つのビジュアルインターフェイスで、コードを書くことなく機械学習(ML)ワークフローでデータの選択とクリーニング、特徴量エンジニアリングの実行に必要な時間を週から分単位に短縮することができ、データの準備を自動化することができますSageMaker Data Wranglerは、人気のあるSnowflakeをサポートしています
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.