Learn more about Search Results ISO - Page 3
- You may be interested
- トップの投稿 6月26日から7月2日:GPT-4に...
- HuggingFace Researchが紹介するLEDITS:D...
- 「ChatGPTとScraperを使用して、TripAdvis...
- 『Talent.com』において
- DuckDB Hugging Face Hubに保存されている...
- 「データを分析するためにOpenAIのコード...
- 「ReLU vs. Softmax in Vision Transforme...
- 「トップAIランダム顔生成アプリ(2023年)」
- 空気圧アクチュエータは、ロボットにチー...
- 「音声のデコード」
- 単変量離散分布:分かりやすい説明
- MFAバイパス攻撃に対する懸念が高まってい...
- 省エネAI:ニューロモーフィックコンピュ...
- メトリックは欺くことができますが、目は...
- 「Amazon SageMakerは、個々のユーザーの...
『ジェネラティブAIの電力消費の定量化』
更新日:2023年12月11日—アナウンスメントにおいてAMDが予想する売上高の倍増を反映するため、アナウンスメントの付録に改訂された分析Generative AIにはグラフィックス処理ユニット(GPU)が必要であり、それらはたくさん必要とされます計算が…
「ガードレールを使用して安全で信頼性のあるAIを設計する方法」
もしデザイン、構築、またはAIの実装に真剣に取り組んでいるのであれば、ガードレールの概念についてはすでに聞いたことがあるかもしれませんAIのリスクを緩和するためのガードレールの概念は新しいものではありませんが、最近の生成型AIの応用の波は、これらの議論をデータエンジニアや学者だけでなく、すべての人にとって関連性のあるものにしました...
確定論的 vs 確率的 – 機械学習の基礎
確定論的モデルと確率モデルは、機械学習やリスク評価を含む様々な分野での手法です。これらのモデルの違いを理解することは、情報を基にした意思決定や予測を行うために重要です。この記事では、確定論的モデルと確率モデルの利点と欠点、それらの応用、および機械学習やリスク評価への影響について探っていきます。 確定論的モデルと確率モデルの理解 確定論的モデルは正確な入力に基づき、同じ入力に対して同じ出力を生成します。これらのモデルは、現在の状態に基づいて将来を確実に予測できると仮定しています。 一方、確率モデルはモデリングプロセスにランダム性と不確実性を取り込みます。さまざまな結果を提供する異なる結果の確率を考慮します。 確定論的モデルの利点と欠点 利点: 確定論的モデルは入力と出力の間に透明な因果関係を確立し、より簡単な解釈を可能にします。 確定論的モデルは計算効率が高く、確率モデルよりも少ない処理能力を必要とします。 これらのモデルは正確な予測に対して少ないデータを必要とするため、データの入手が制限されている状況に適しています。 欠点: 確定論的モデルは全ての変数を把握し正確に測定できるという条件に基づいていますが、これは現実の複雑さと一致しない場合があります。 確定論的モデルは、多くの現実世界の状況に固有の不確実性やランダム性を考慮していないため、予測の精度に問題が生じる可能性があります。 確率モデルの利点と欠点 利点: 確率モデルは不確実性やランダム性を考慮するため、不確実な将来が予想されるシナリオに適しています。 異なるシナリオの可能性を評価し、情報を持った選択をするために、さまざまな結果を提供します。 欠点: 確率モデルは確定論的モデルよりも多くのデータと計算資源を要求するため、リソースが制限された状況での制約となる可能性があります。 確率モデルの出力は確率的な性質を持つため、解釈がより複雑で、確率と統計の概念を微妙に理解する必要があります。 確定論的モデルと確率モデルの違い 定義と概念 確定論的モデルは固定された入力に基づき、毎回同じ出力を生成します。これらのモデルは、現在の状態に基づいて将来を正確に決定できると仮定しています。一方、確率モデルはランダム性と不確実性を取り込んでいます。確率的な入力を組み込み、さまざまな結果の範囲を提供し、異なる結果の可能性を評価できます。 ユースケースと応用 人々は、確定論的モデルを明確で予測可能な入力と出力のシナリオで一般的に使用します。例えば、エンジニアや物理学者は、既知のパラメータを持つシステムの振る舞いを分析するために、確定論的モデルを使用します。…
『GPT-4を使用したパーソナライズされたAIトレーディングコンサルタントの構築』
はじめに 近年、人工知能(AI)を株式取引に統合することで、投資家の意思決定に革命が起きています。GPT-3やGPT-4などの大規模言語モデル(LLMs)の登場により、複雑な市場分析や洞察が個々の投資家やトレーダーによりアクセスしやすくなりました。この革新的なテクノロジーは、膨大なデータと高度なアルゴリズムを活用して、かつて機関投資家の専売特許であった市場の理解を提供するものです。この記事では、リスク許容度、投資期間、予算、および期待利益に基づいた個別の投資プロファイルに合わせた、パーソナライズされたAI取引コンサルタントの開発に焦点を当てており、個人投資家に戦略的な投資アドバイスを提供することで彼らを強化しています。 GPT-3やGPT-4といった大規模言語モデル(LLMs)によって動かされる株式取引コンサルタントは、金融アドバイザリーサービスに革命をもたらしました。これらのコンサルタントは、AIを活用して過去の株式データや最新の金融ニュースを分析し、投資家の独自のポートフォリオと金融目標に合ったパーソナライズされた投資アドバイスを提供できます。本記事では、市場の動向やトレンドを予測するためのコンサルタントの構築に挑戦し、個別のリスク許容度、投資期間、投資可能な資金、および期待利益に基づいたカスタマイズされた推奨事項を提供します。 学習目標 本記事の終わりまでに、読者は以下のことができるようになります: AIやGPT-3などのLLMsが株式市場分析や取引をどのように変革するかについて洞察を得る。 AI主導のツールが個別のリスクプロファイルと投資目標に基づいたパーソナライズされた投資アドバイスを提供する能力を認識する。 AIが過去とリアルタイムのデータを活用して投資戦略と予測を立案する方法を学ぶ。 AIを用いた株式取引が、小売投資家を含むより広範なユーザーに洗練された投資戦略を提供する方法を理解する。 パーソナル投資や株式取引での情報を活用した意思決定のためにAI主導のツールを活用する方法を発見する。 LLMsを活用した株式取引コンサルタントのコンセプト この記事はData Science Blogathonの一部として公開されました。 データセットについて このプロジェクトのためのデータセットは、ニューヨーク証券取引所からのものであり、Kaggleで利用可能です。このデータセットには、7年間にわたる4つのCSVファイルが含まれています。重要な財務尺度を提供する「fundamentals.csv」、株式分割に関する過去の株価と調整を提供する「prices.csv」と「prices-split-adjusted.csv」、セクター分類や本社などの追加の企業情報を提供する「securities.csv」が含まれています。これらのファイルは、企業のパフォーマンスと株式市場の動向を包括的に把握するためのものです。 データの準備 GPT-4のような大規模言語モデル(LLMs)を使用した株式取引コンサルタントの実装は、重要なデータの準備から始まります。このプロセスには、データのクリーニング、正規化、カテゴリ化といった重要なタスクが含まれ、提供されたデータセット「fundamentals.csv」「prices.csv」「prices-split-adjusted.csv」「securities.csv」を使用します。 ステップ1:データのクリーニング 「Fundamental Dataset」では、「For Year」「Earnings Per Share」「Estimated…
AI記事スキャンダルがアリーナグループに波紋を広げ、CEOが解任される
アリーナグループは、スポーツイラストの発行元として最もよく知られており、AI記事のスキャンダルに揺れた会社のCEOを解任しましたこれは、スポーツイラストがAIを使用して記事を公表していたことが明らかになってから数週間後のことですこれは、Futurismが昨年11月に報告した会社を発見した後の出来事です...
「RustコードのSIMDアクセラレーションのための9つのルール(パート1)」
「SIMDを使用してRustコードを高速化するための9つの基本ルールを探索してくださいcoresimd、最適化テクニック、およびパフォーマンスを7倍に向上させる方法を学びましょう」
「月光スタジオのAIパワード受付アバター、NANAに会いましょう」
エディター注:この投稿は、当社の週刊「In the NVIDIA Studio」シリーズの一環であり、注目のアーティストを紹介し、クリエイティブのヒントやトリックを提供し、NVIDIA Studio技術がクリエイティブなワークフローを向上させる方法を示しています。また、新しいGeForce RTX 40シリーズGPUの機能、技術、リソースについて詳しく説明し、コンテンツ制作を劇的に加速させる方法を探求しています。 ムーンシャインスタジオのクリエイティブチームは、アニメーションとモーションデザインに特化したアーティスト志向の視覚効果(VFX)スタジオであり、問題を解決するように指示されました。 彼らの台湾オフィスでは、受付担当者が常に面会や挨拶に忙しく、他の重要な事務作業を完了できませんでした。さらに悪いことに、自動化されたキオスクの挨拶システムは予想通りに機能していませんでした。 シニアムーンシャインスタジオ3Dアーティストであり、今週のNVIDIA StudioクリエーターであるEric Chiangは、この課題に取り組みました。彼は現実的でインタラクティブな3Dモデルを作成しました。これは新しいAIパワードのバーチャルアシスタントであるNANAの基盤となります。このアバターは、ゲストを歓迎し、基本的な会社情報を提供することができ、受付担当者チームの負担を軽減します。 Chiangは、彼のお気に入りのクリエイティブアプリでGPUアクセラレーションの機能を使用してNANAを構築しました。それは彼のNVIDIA StudioバッジのついたMSI MEG Trident X2 PCという装備されたGeForce RTX 4090グラフィックカードで駆動されています。 彼のクリエイティブワークフローは、彼のGPUのテンソルコアによって強化され、AI特有のタスクを高速化し、作業の品質を向上させました。RTXとAIはゲームのパフォーマンスを向上させ、生産性を向上させるなどもします。 これらの高度な機能はNVIDIA Studio Driversによってサポートされています。…
「2020年と2021年のトップの声、グレッグ・コキーヨとともにLinkedInで成功しよう」
「私は、LinkedInで注目されるトップボイスのGreg Coquilloさんと魅力的な会話をしました彼はシニアプロダクトマネージャーであり、AIスタートアップの投資家でもありますこの機会を利用して重要なポイントについて深く掘り下げることができました」
「金融業界におけるAIの進出:自動取引からパーソナライズドバンキングへ」
財界は、人工知能(AI)の出現と統合によって、革命的な変化を目撃していますこの技術は、単なる付加要素ではなく、金融サービスの本質的な構造を再構築するための核となる要素です超人的なスピードで取引を実行する自動化取引アルゴリズムから個別の顧客に合わせたパーソナライズされたバンキング体験まで、AIによる金融業界の侵略が進行しています... 金融業界におけるAIの進出:自動化取引からパーソナライズされたバンキングへ Read More »
ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ
Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.