Learn more about Search Results EU - Page 3

「ODSC Europe 2023に参加するためのすべての無料バーチャルセッション」

ODSC Europeは来週、6月14日から15日に開催されますデータサイエンスコミュニティを実際の場でもオンラインでもつなげ、再び交流し、学び、成長することを楽しみにしています実際の参加パスはほぼ完売ですが、心配しないでくださいもしTobacco Dockでの参加ができない場合は...

「ODSC EuropeのML for Financeトラックで経済をより深く理解しましょう」

多くの産業は、ワークフローに機械学習を導入することで大きな恩恵を受けてきましたしかし、ファイナンスと投資の世界は、機械学習を取り組みの一環として積極的に活用してきたようですですので、もし金融と...

「ODSC Europe 2023のトップバーチャルセッションをこちらでご覧ください」

「ODSC Europeで最高の時間を過ごしました参加された皆さんも、現地またはオンラインで参加された皆さんも、同じように楽しんでいただけたことを願っています!参加できなかった方々のために、仮想会議のハイライトをいくつか共有したいと思います以下には、多くのハイライトの中からほんの一部をご紹介しています...」

「ODSC Europe 2023の写真とハイライト」

ODSC Europe 2023から数週間が経ちましたが、最高のノートで去ることができました週はデータサイエンスのトップトピック、AIのイノベーションに関する魅力的なセッションで満ち、しばらく会っていなかった笑顔の顔もありました以下はODSCのハイライトです...

DeepMindの最新研究(NeurIPS 2022)

NeurIPSは人工知能(AI)と機械学習(ML)の世界最大のカンファレンスであり、私たちはダイヤモンドスポンサーとしてイベントをサポートし、AIとMLコミュニティでの研究進展の交流を促進することを誇りに思っていますDeepMindのチームは、仮想パネルやポスターセッションで、35の外部との共同研究を含む47の論文を発表しています

メタは、プライバシー侵害のチェックに関して、独占禁止法監視機関を支持するEU最高裁判所に敗訴しました

メタはユーザーデータを収集し、ビッグテックに共通のビジネスモデルである行動ターゲティング広告に利用しています

Eleuther AI Research Groupが、Classifier-free Guidance(CFG)がLLMsとどのように組み合わされるかを実証しました

最近、巨大な言語モデルは印象的な生成能力を示し、様々な問題に対応することができるようになりました。通常、タスクの指示や文脈、または少数のサンプルを使用して、生成を条件付けるために「プロンプティング」が使用されます。しかし、小さなモデルでは特に、幻覚、劣化、迷走などの問題が言語生成において観察されています。この問題に対処するために、指示の微調整や強化学習などのいくつかの解決策が提案されています。しかし、高いコンピューティングとデータの要件のため、これらの方法を利用できるのはすべてのユーザーではありません。 EleutherAIの研究グループは、プロンプトの形でユーザーの宣言された意図により大きな重みを置く推論アプローチを提案しています。彼らの最近の研究では、推論時にプロンプトにより重みを加えることで、生成の一貫性を改善することを提案しています。 テキストから画像への生成でも同じ問題が存在することが示されています。通常の推論手法では、珍しいまたは特殊な刺激に対して重要な詳細を見落とす場合があります。出力画像に所望の特性を促すために別個の分類器を使用することが提案され、拡散モデルの生成品質が向上するとされています。後に、分類器を完全に廃止し、代わりに生成モデルを暗黙の分類器として使用するClassifier-Free Guidance (CFG) が開発されました。 テキストから画像生成の成功から着想を得て、研究者たちはCFGを単一モーダルのテキスト生成に使用するために改変し、モデルの入力に適合させることを示しています。研究では、テキスト生成ではCFGをそのまま使用できる一方、テキストから画像を生成するモデル(主に拡散モデルを使用する)はCFGを活用するために条件付きドロップアウトをトレーニングする必要があることを示しています。この研究は、シンプルな一回のプロンプトから複雑なチャットボットスタイルのプロンプトまで、さまざまなプロンプティング手法におけるアライメントの向上にCFGを使用する方法を示しています。 研究者たちはCFGを言語モデリングに適用する方法論を開発し、業界標準のベンチマークで大幅な改善を実証しています。基本的なプロンプト、チェーンプロンプティング、長文プロンプティング、チャットボットスタイルのプロンプティングは、これらのベンチマークによって捉えられます。具体的には、LLaMA-7BはPaLM-540Bを上回り、LAMBADAでSOTAとなる方法を可能にします。 LMのロジット分布を変更しようとする推論手法のコレクションが増えていますが、この研究はそれらにうまく適合しています。結果は、CFGの倍増した推論FLOPが、モデルの性能をおおよそ2倍にすることを示しています。これにより、より複雑で実行コストの低いモデルを、よりパワフルではないハードウェア上で実行するための道が開かれます。 ネガティブなプロンプトを使用することで、CFGのどの特徴を強調するかをより細かく制御することができます。結果は、75%の人がGPTを標準のサンプル方法よりも好むことを示しています。

デジタルルネッサンス:NVIDIAのNeuralangelo研究が3Dシーンを再構築

NVIDIA Researchによる新しいAIモデル、Neuralangeloは、ニューラルネットワークを使用して3D再構築を行い、2Dビデオクリップを詳細な3D構造に変換し、建物、彫刻、およびその他の現実世界のオブジェクトのリアルなバーチャルレプリカを生成します。 ミケランジェロが大理石のブロックから驚くべきリアルなビジョンを彫刻したように、Neuralangeloは複雑なディテールと質感を持つ3D構造を生成します。クリエイティブなプロフェッショナルは、これらの3Dオブジェクトをデザインアプリケーションにインポートし、アート、ビデオゲーム開発、ロボット工学、および産業用デジタルツインに使用するためにさらに編集することができます。 Neuralangeloは、屋根の瓦、ガラスの板、滑らかな大理石などの複雑な素材の質感を、従来の手法を大幅に上回る精度で2Dビデオから3Dアセットに変換することができます。この高い信頼性により、開発者やクリエイティブなプロフェッショナルは、スマートフォンでキャプチャされた映像を使用してプロジェクトに使用できる仮想オブジェクトを迅速に作成できます。 「Neuralangeloが提供する3D再構築機能は、クリエイターにとって大きな利益になります。現実世界をデジタル世界に再現するのを支援することで、開発者は小さな像や巨大な建築物などの詳細なオブジェクトを仮想環境にインポートできるようになります。」と、研究のシニアディレクターであり、論文の共著者でもあるMing-Yu Liu氏は述べています。 デモでは、NVIDIAの研究者が、ミケランジェロのダビデ像やフラットベッドトラックなどといったアイコニックなオブジェクトを再現する方法を紹介しました。Neuralangeloは、建物の内部および外部も再構築することができ、NVIDIAのベイエリアキャンパスの公園の詳細な3Dモデルで実証されました。 ニューラルレンダリングモデルが3Dで見る 3Dシーンを再構築するための以前のAIモデルは、繰り返しのテクスチャパターン、同質的な色、および強い色の変化を正確に捉えることができませんでした。Neuralangeloは、これらの微細なディテールを捉えるために、NVIDIA Instant NeRFの背後にある技術であるインスタントニューラルグラフィックスプリミティブを採用しています。 さまざまな角度から撮影されたオブジェクトまたはシーンの2Dビデオを使用して、モデルは異なる視点を捉えたいくつかのフレームを選択します。これは、アーティストが対象を多角的に考慮して深度、サイズ、および形状を把握するのと同じです。 フレームごとのカメラ位置が決定されたら、NeuralangeloのAIはシーンの大まかな3D表現を作成します。これは、彫刻家が主題の形を彫刻し始めるのと同じです。 次に、モデルはレンダリングを最適化してディテールをシャープにします。これは、彫刻家が石を注意深く削って布の質感や人物の形を再現するのと同じです。 最終的な結果は、仮想リアリティアプリケーション、デジタルツイン、またはロボット工学の開発に使用できる3Dオブジェクトまたは大規模なシーンです。 CVRPでNVIDIA Researchを見つける、6月18日〜22日 Neuralangeloは、6月18日から22日にバンクーバーで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVRP)で発表されるNVIDIA Researchの約30のプロジェクトの1つです。これらの論文は、ポーズ推定、3D再構築、およびビデオ生成などのトピックをカバーしています。 これらのプロジェクトの1つであるDiffCollageは、長いランドスケープ方向、360度パノラマ、およびループモーション画像を含む大規模なコンテンツを作成する拡散法です。標準的なアスペクト比の画像のトレーニングデータセットをフィードすると、DiffCollageはこれらの小さな画像をコラージュのピースのように扱い、より大きなビジュアルのセクションとして扱います。これにより、拡散モデルは、同じスケールの画像のトレーニングを必要とせずに、継ぎ目のない大規模なコンテンツを生成できるようになります。 この技術は、テキストプロンプトをビデオシーケンスに変換することもできます。これは、人間の動きを捉える事前訓練された拡散モデルを使用して実証されました。 NVIDIA Researchについてもっと学ぶ。

Googleは独占禁止法訴訟で敗訴:ビッグテックにとって何を意味するのか?

「エピックゲームズが検索大手との法的闘争に勝利した事は画期的な勝利であり、同社の強さと決断力を示す重要な節目となりました」

マウス用のVRゴーグル:ネズミの世界の秘密を解き放つ

ノースウェスタン大学の研究者たちは、マウス向けの仮想現実ゴーグルを作り出すことで画期的な成果を達成しましたこの革新的な技術により、より高度な実験を行い、マウスの行動や認知機能をより深く理解することが可能になりましたこのブレークスルーは、科学研究を大幅に向上させ、将来の発見の道を開拓する可能性を秘めています

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us