Learn more about Search Results Claude - Page 3

最近の人類学的研究によれば、クロード2.1の戦略的な促進を通じて、プロンプトに単一の追加をすることで、LLMsの記憶容量を70%増加させることができると報告されました

以下のHTMLコードを日本語に翻訳します(HTMLコードは結果に含めます): この研究は、Claude 2.1の機能における固有の課題に取り組んでいます:200,000トークンの文脈ウィンドウ内での個々の文に基づく質問に対する抵抗力です。このため、モデルのリコール能力を最大化する上で重要なハードルとなり、解決策の探求を促しています。 現在の手法を調査すると、Claude 2.1は、特に場違いとされる個々の文に関する質問に直面した際に躊躇することがわかります。これに対応して、Anthropicの研究者たちは、驚くほど効果的な解決策を提案しています:プロンプトの追加です。彼らは、「文脈内で最も関連のある文は次のとおりです:」という文をプロンプトに組み込むことを提案しています。この些細な調整は、メタコマンドに似ており、モデルのリコール能力を大幅に向上させます。 追加されたプロンプトは、Claude 2.1に関連する文を優先的に処理するよう指示するため、効果的にモデルの質問に対する躊躇を解消します。200,000文脈ウィンドウの評価において、Claudeのスコアは27%から98%に驚異的に向上するなど、パフォーマンスの改善が実証されています。 特に、このプロンプトを提供した後、単文のクエリの正確性が驚異的に90%増加しました。単文のクエリの正確性の増加は、追加されたプロンプトがClaude 2.1のパフォーマンスに与える重要な影響を示しています。この大幅な改善は、より広範な文脈内の単一の文の照会を処理する能力を高め、解決策の実用的な意義を示しています。 まとめると、この革新的な手法はClaude 2.1の躊躇を解消し、単一のプロンプトの追加によってリコール能力が70%向上することを示しています。研究チームの調査結果は、プロンプトの微妙な動態と言語モデルの振る舞いへの重要な影響について貴重な示唆を提供しています。AIコミュニティは大規模言語モデルの精度を高めるために改善を追求していますが、この発見は機能性の向上に実用的な意義を持つ注目すべき進展となります。 この記事はMarkTechPostの投稿から引用されました。

マイクロソフトの研究者が提案するTaskWeaver:LLMを活用した自律エージェントの構築のためのコード優先の機械学習フレームワーク

大規模言語モデル(LLMs)は、印象的な自然言語生成および解釈能力を示しています。これらのモデルの例には、GPT、Claude、Palm、Llamaがあります。チャットボット、バーチャルアシスタント、コンテンツ生成システムなど、様々な応用でこれらのモデルが広く使用されています。LLMsは、より直感的かつ自然な体験を提供することで、人々がテクノロジーとのインタラクションを完全に変えることができます。エージェントは、自律的なエンティティであり、タスクの計画、環境の監視、適切な対応策の実施が可能です。LLMsやその他のAI技術を使用するエージェントも、このカテゴリに該当します。 Langchain、Semantic Kernel、Transformers Agent、Agents、AutoGen、およびJARVISなど、多くのフレームワークがタスク指向の対話にLLMsを使用しようと試みています。これらのフレームワークを使用すると、ユーザーは自然言語で質問をして回答を得ることで、LLMパワードのボットと対話することができます。ただし、多くのフレームワークには、データ分析活動や特定の領域に固有の状況にうまく対応できる機能が制約されているという欠点があります。現在のほとんどのフレームワークには、洗練されたデータ構造を処理するためのネイティブサポートの不足がその主な欠点の一つです。データ分析アプリケーションや他の多くのビジネスシナリオでは、LLMパワードエージェントはネストされたリスト、辞書、またはデータフレームなどの複雑なデータ構造を処理する必要があります。 ただし、現在の多くのフレームワークは、特にデータを複数のプラグインやチャットラウンド間で共有する場合に、これらの構造の管理に支援が必要です。これらの状況では、フレームワークは複雑な構造を文字列またはJSONオブジェクトとしてエンコードし、プロンプトに保持するかデータをディスクに永続化します。これらの手法は機能しますが、特に大規模なデータセットで作業する場合には困難になり、エラーレートを上げることがあります。現在の方法がドメイン知識を組み込むために設定可能ではないという別の欠点もあります。これらのフレームワークは、迅速なエンジニアリングツールとサンプルを提供する一方で、ドメイン固有の情報を計画とコード生成プロセスに組み込むための体系的な手段を提供する必要があります。 特定のドメインニーズに合わせて計画とコード生成プロセスを制御することは制約のために難しいです。現在の多くのフレームワークには、ユーザーの要件の広範な範囲に対応することが困難になる可能性があるという別の問題もあります。プラグインは一般的な要件を処理できますが、臨時の要求を処理するためには支援が必要です。臨時のクエリごとに別のプラグインを作成することは現実的ではありません。ユーザーのクエリを実行するために独自のコードを開発できるエージェントの能力は、これらの場合には重要になります。この問題を解決するには、独自のコードの実行とプラグインの実行をスムーズに統合するソリューションが必要です。 これらの欠点を克服するために、Microsoftの研究チームはTaskWeaverというLLMパワードの自律エージェントを作成するためのコードファーストフレームワークを提案しました。TaskWeaverの特徴的な機能は、ユーザー定義のプラグインを呼び出し可能な関数として扱うことで、各ユーザーリクエストを実行可能なコードに変換することができることです。TaskWeaverは、洗練されたデータ構造のサポート、柔軟なプラグインの使用、および動的なプラグインの選択を提供し、他のフレームワークの制約を克服するのに役立ちます。TaskWeaverはLLMsのコーディング能力を活用して複雑なロジックを実装し、例を通じてドメイン固有の知識を統合します。 さらに、TaskWeaverは開発者に直感的なインターフェースを提供し、作成されたコードの安全な実行を大幅に向上させています。研究チームは、TaskWeaverのアーキテクチャと実装について説明し、さまざまなジョブをどのようにうまく処理するかを示すいくつかの事例研究を紹介しています。TaskWeaverは、課題の多いジョブを処理し、特定のドメイン条件に適合するために変更することが可能な知能を持つ会話エージェントを作成するための強力で柔軟なフレームワークを提供しています。

関数を呼び出す

第三者の大規模言語モデル(LLM)の観測性は、AnthropicのClaude、OpenAIのGPTモデル、GoogleのPaLM 2などのモデルに対してベンチマーキングと評価を用いて主にアプローチされています...

「エンティティ抽出、SQLクエリ、およびAmazon Bedrockを使用したRAGベースのインテリジェントドキュメントアシスタントの強化」

会話AIは、最近の生成AIの急速な発展により、特に指示微調整や人間のフィードバックからの強化学習といったトレーニング技術によって導入された大規模言語モデル(LLM)のパフォーマンス改善により、大きな進歩を遂げてきました正しくプロンプトされると、これらのモデルは特定のタスクのトレーニングデータなしで、一貫した会話を行うことができます[…]

「Q4 Inc.が、Q&Aチャットボットの構築において、数値と構造化データセットの課題に対処するために、Amazon Bedrock、RAG、およびSQLDatabaseChainを使用した方法」

この投稿は、Q4 Inc.のスタニスラフ・エシェンコと共同執筆されました企業は、問答型チャットボットを構築する主流アプローチとして、Retrieval Augmented Generation(RAG)に注目しています利用可能なデータセットの性質から生じる新たな課題が引き続き現れていることを確認していますこれらのデータセットは、しばしば数値とテキストデータの混合であり、時には構造化されています

言語モデルを使用したドキュメントの自動要約のテクニック

要約は、大量の情報をコンパクトで意味のある形式に短縮する技術であり、情報豊かな時代における効果的なコミュニケーションの基盤となっていますデータの溢れる世界で、長いテキストを短い要約にまとめることで時間を節約し、的確な意思決定を支援します要約は内容を短縮して提示することにより、時間を節約し、明確さを向上させる役割を果たします

ChatGPTの初めての記念日:AIインタラクションの未来を変える

私たちの包括的な記事で、ChatGPTの1年間の旅とオープンソースのLarge Language Models(LLMs)の進化を探求してください技術の進歩、産業への応用、医療への影響、そしてAIの未来についての洞察を深く掘り下げますまた、OpenAIの噂されるQ*モデルについても触れます

「トップ40以上の創発的AIツール(2023年12月)」

ChatGPT – GPT-4 GPT-4は、以前のモデルよりもより創造的で正確かつ安全なOpenAIの最新のLLMです。また、画像、PDF、CSVなどの多様な形式も処理できるマルチモーダル機能も備えています。コードインタープリターの導入により、GPT-4は独自のコードを実行して幻覚を防ぎ、正確な回答を提供することができます。 Bing AI Bing AIは、OpenAIのGPT-4モデルを搭載し、正確な回答を提供するためにウェブを横断することができます。また、ユーザーのプロンプトから画像を生成する能力も持っています。 GitHub Copilot GitHub Copilotは、コードを分析し、即座のフィードバックと関連するコードの提案を提供するAIコード補完ツールです。 DALL-E 2 DALL-E 2はOpenAIによって開発されたテキストから画像を生成するツールで、ユーザーのプロンプトに基づいてオリジナルの画像を作成します。不適切なユーザーリクエストを拒否するように設計されています。 Cohere Generate Cohere Generateは、AIの潜在能力を活用してビジネスプロセスを向上させるものです。メール、ランディングページ、製品の説明など、さまざまな要件に合わせたパーソナライズされたコンテンツを提供します。 AlphaCode AlphaCodeはDeepMindによって開発され、競争力のあるレベルでコンピュータプログラムを作成することができます。 Adobe Firefly…

「RetinaNetとKerasCVを使用した物体検出」

画像セグメンテーションをベースにしたミニプロジェクトを終えた後(こちらをご覧ください)、コンピュータビジョンの一環として、別の一般的なタスクに取り掛かる準備ができました:オブジェクト検出ですオブジェクト検出とは...

このAIペーパーは、さまざまなタスクでChatGPTに追いついたり超えたりすると主張するオープンソースの大規模言語モデルの詳細なレビューを公開しています

昨年のChatGPTのリリースは、人工知能コミュニティを驚かせました。最新の大規模言語モデルであるGPTのトランスフォーマーアーキテクチャに基づいて開発されたChatGPTは、学術および商業アプリケーションの両方に大きな影響を与えています。このチャットボットは、リインフォースメントラーニングフロムヒューマンフィードバック(RLHF)の能力を利用し、監視付きのファインチューニングを通じて指示を調整することで、簡単に人間に応答し、コンテンツを生成し、クエリに答え、さまざまなタスクを実行することができます。 最近の研究では、シンガポール国立大学(NTU)、SalesForce AI、I2Rの研究者チームが、オープンソースの大規模言語モデル(LLM)の最新研究をまとめ、さまざまなコンテキストでChatGPTと同等またはそれ以上のパフォーマンスを発揮するモデルの完全な概要を提供するために広範な調査を行いました。ChatGPTのリリースと成功により、学界と産業界の両方で、この分野に専念したスタートアップから生まれた新しいLLMが豊富に見られるなど、LLM関連の追求が盛んになりました。 AnthropicのClaudeのようなクローズドソースのLLMは一般的にオープンソースの対抗モデルよりも優れているものの、OpenAIのGPTなどのモデルはより速く進化してきました。特定のタスクで同等またはそれ以上のパフォーマンスを達成するという主張が増えており、これによりクローズドソースモデルの歴史的な優位性が危うくなっています。 研究の観点から、新しいオープンソースのLLMの連続的なリリースとそれらの成功が、これらのモデルの強みと弱点を再評価することを余儀なくさせています。オープンソースの言語モデリングソフトウェアの進展は、言語モデルを組織の運営に取り入れたい企業にとって、ビジネスに関連する課題を提供しています。独自の代替品と同等またはそれ以上のパフォーマンスを得る可能性のおかげで、企業は独自の要件に最適なモデルを選択するためにより多くの選択肢を持つようになりました。 チームは、調査の貢献を特徴づけるために使用できる3つの主要なカテゴリを共有しました。 評価のまとめ:調査では、オープンソースのLLMがChatGPTとどのように異なるかについて客観的かつ包括的な視点を提供するために、さまざまな評価をまとめました。この総合は、オープンソースのLLMの利点と欠点を読者に包括的に理解させます。 モデルのシステマティックなレビュー:ChatGPTと同等またはそれ以上のパフォーマンスを発揮するオープンソースのLLMが、さまざまなタスクで調査されました。さらに、チームはリアルタイムで更新されるウェブページを共有しました。これにより、読者は最新の変更を確認できます。これは、オープンソースのLLMの開発のダイナミックな性質を反映しています。 助言と洞察:レビューや評価に加えて、調査はオープンソースのLLMの進化に影響を与えるパターンについての洞察力のある情報を提供しています。また、これらのモデルの潜在的な問題を探求し、オープンソースのLLMを教育するためのベストプラクティスについても議論しています。これらの結果は、企業セクターと学術コミュニティの両方に対して、既存のコンテキストと将来の可能性について詳細な視点を提供しました。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us