Learn more about Search Results AlphaGo - Page 3
- You may be interested
- 自己学習のためのデータサイエンスカリキ...
- 「あなたの聴衆を知る:テクニカルプレゼ...
- 「考古学的アプローチがAIの偏りのあるデ...
- クロスバリデーションの助けを借りて、あ...
- スマートな”メガネは非着用者とのパ...
- OpenAIが「スーパーアラインメント」を紹...
- 「Amazon Web Servicesでの生成型AIアプリ...
- 「ChatGPTとAIでお金を稼ぐ3つの方法」
- 将来のPythonバージョン(3.12など)に一...
- 「データサイエンスのトップ7の無料クラウ...
- シンガポール国立大学(NTU)の研究者が提...
- 「ダイナミックな時代のソフトウェアリー...
- 「Llama 2によるトピックモデリング」
- マイクロソフトとコロンビア大学の研究者...
- 「安定拡散を使用したハイパーリアルな顔...
Google DeepMindは、ChatGPTを超えるアルゴリズムの開発に取り組んでいます
画期的な発表により、GoogleのDeepMind AI研究所のCEOであるデミス・ハサビス氏は、革新的なAIシステムであるGeminiの開発を発表しました。Geminiは、DeepMindが囲碁のゲームでの歴史的な勝利から導き出した技術を活用し、OpenAIのChatGPTを超える予定のアルゴリズムを持つことで、人工知能の分野で重要なマイルストーンを示すものです。この発表は、AIの未来における能力の向上と革新的な進展を約束するものであり、その詳細と将来への潜在的な影響について詳しく探っていきます。 Gemini:AI技術の次の飛躍 DeepMindの画期的なAIシステムであるGeminiは、人工知能の分野でのゲームチェンジャーとして登場しました。AlphaGoの驚異的な成果を基にしたGeminiは、DeepMindの先駆的な技術とGPT-4の言語能力を組み合わせることで、OpenAIのChatGPTの能力を超えるものとなっています。これらの強みの融合により、GeminiはAIの景観を再定義する有望なイノベーションとなっています。 強みの融合:AlphaGoとGPT-4のシナジー AlphaGoの強力な技法をGPT-4モデルに取り入れることで、Geminiは従来の言語モデルの制約を超越します。Geminiの言語能力と問題解決能力のユニークな組み合わせは、AIを革新することを約束します。DeepMindのCEOであるデミス・ハサビス氏は、テキストの理解と生成に優れたシステムが複雑な問題を計画し解決する能力を持つシステムを想像しています。 また読む:DeepMind CEOがAGIの実現が非常に近い可能性を示唆 革新の公開:Geminiの魅力的な特徴 Geminiは、AIの能力の限界を押し広げる多くの魅力的な特徴を導入する予定です。AlphaGoタイプのシステムと大規模な言語モデルの結合により、GeminiはAIの潜在能力の新たな時代をもたらします。DeepMindのエンジニアたちは、Gemini内のいくつかの興味深いイノベーションを示唆しており、公式のローンチに対する期待感をさらに高めています。 強化学習:AlphaGoの成功の基盤 画期的な強化学習技術は、AlphaGoの歴史的な勝利の中核にありました。DeepMindのソフトウェアは、繰り返しの試行とパフォーマンスに対するフィードバックを通じて、複雑な問題をマスターしました。さらに、AlphaGoはツリーサーチと呼ばれる方法を利用して、ボード上の潜在的な手を探索して記憶することができました。この基盤はGeminiの将来の発展の基礎となっています。 また読む:強化学習の包括的なガイド 進行中の旅:Geminiの開発 Geminiはまだ開発段階にありますが、ハサビス氏はその取り組みと投資の大きさを強調しています。DeepMindのチームは、Geminiを完成させるために数か月と膨大な資金(数千万ドルまたは数億ドルにもなる可能性があります)が必要となると推定しています。この取り組みの重要性は、Geminiの潜在的な影響の重要性を示しています。 競争に対抗する:Googleの戦略的な対応 OpenAIのChatGPTが注目を集める中、Googleは迅速に生成型AIを製品に統合し、チャットボットBardを導入し、AIを検索エンジンに組み込みました。GoogleはDeepMindとGoogleの主要なAI研究所であるBrainを統合してGoogle DeepMindを形成することで、ChatGPTによる競争の脅威に対処しようとしています。この戦略的な動きは、GoogleがAIのイノベーションの最前線にとどまることへの取り組みを示しています。 また読む:Chatgpt-4対Google Bard:ヘッドトゥヘッドの比較 DeepMindの旅:買収から驚嘆まで DeepMindの2014年のGoogleによる買収は、AI研究における転換点となりました。この会社の革新的なソフトウェアは強化学習によって駆動し、以前には想像もつかなかった能力を示しました。AlphaGoが2016年に囲碁のチャンピオン李世ドルに対して勝利を収めたことは、AIコミュニティを驚かせ、複雑なゲームにおける人間レベルの熟練度を達成するためのタイムラインに関する先入観に挑戦しました。 また読む:DeepMindのAIマスターゲーマー:2時間で26のゲームを学ぶ トランスフォーマーのトレーニング:大規模言語モデルの基盤…
2023年にフォローすべきトップ10のAIインフルエンサー
イントロダクション 先端技術と驚くべき可能性によって駆動される世界で、AIの絶えず進化する領域に遅れをとらないことは、スリリングで不可欠なものです。2023年という有望な年に足を踏み入れると、最も影響力のあるビジョナリーなAIの草分けたちの心の中を巡るエキサイティングな旅に出る時がきました。準備を整えて、2023年にフォローすべきAIのトップ10インフルエンサーと出会う準備をしましょう。彼らはAIの景色を形作り、可能性の限界を押し広げている前衛的な思想家や創造者です。 画期的な研究から魅惑的な洞察まで、これらのAIインフルエンサーは、人工知能のエキサイティングな世界を照らす指針となる存在です。仮想のノートパッドを手に取り、シートベルトを締めてください。なぜなら、私たちは時代を超えてAIの未来を再定義するビジョンを明らかにするための、最も優れたAIの脳の探求に乗り出すからです。2023年以降のAIの未来を再定義するビジョンを明らかにするための、最も優れたAIの脳の探求に乗り出すからです。 しかし、このトップ10リストに飛び込む前に、私たちはあなたに素晴らしい機会をご紹介したいと思います。データサイエンスとAI愛好家の皆さんに、大いに期待されるDataHack Summit 2023への独占的な招待状をお届けします。8月2日から5日まで、バンガロールの名門NIMHANSコンベンションセンターで開催されます。このイベントは、実践的な学習、貴重な業界の洞察、抜群のネットワーキングの機会が満載で、楽しい時間を過ごせること間違いありません。DataHack Summit 2023の詳細については、こちらでご確認ください。データ革命に参加してください。 AIインフルエンサーの定義 AIインフルエンサーとは、その専門知識、思想リーダーシップ、貢献を通じて、人工知能(AI)の分野で認識と影響力を得た個人のことです。彼らはAIコミュニティと積極的に関わり、ソーシャルメディアプラットフォームを活用しています。 AIインフルエンサーは単一のソーシャルメディアプラットフォームに限定されるものではありません。Instagramに加えて、彼らはTwitter、YouTube、LinkedIn、ブログなど、さまざまなプラットフォームで強力な存在感を持っており、AIに関連する洞察、研究結果、業界のトレンド、思考を刺激するコンテンツを共有しています。これらのインフルエンサーは多くのフォロワーを持ち、自身の観衆と関わりながら、ディスカッションを促進し、ガイダンスを提供し、AI分野での革新を促し、インスピレーションを与えています。ハッカソンの開催からライブコーディングセッションの実施まで、これらのインフルエンサーは自身の専門知識を披露し、大きな人気と視聴数を獲得しています。彼らのインタラクティブなセッションとイベントは、価値ある学習の機会を提供し、AIのスキルを向上させ、最新の進歩に遅れずにいることを奨励しています。 人工知能の分野におけるAIインフルエンサーの重要性 人工知能の分野におけるAIインフルエンサーの重要性は過小評価できません。彼らはいくつかの側面で重要な役割を果たしています: 知識の普及 AIインフルエンサーは、広範な観衆に対して知識、洞察、業界の最新情報を普及させます。彼らは複雑なAIの概念を簡単に説明し、AIの専門家志望者、愛好家、一般の人々にもアクセスしやすくします。 トレンドセッターや意見リーダー AIインフルエンサーは、最新のAIのトレンド、ブレークスルー、技術の最前線に常に接しています。彼らの意見と推奨事項は重要であり、AIの研究、応用、業界の実践に影響を与えることができます。 ネットワーキングとコラボレーション AIインフルエンサーは、AIコミュニティ内でのネットワーキングとコラボレーションの場を提供します。彼らはプロフェッショナル、研究者、組織をつなぎ、革新を促進し、AI技術の開発を推進する協力的な環境を育成します。 フォローすべきトップAIインフルエンサー 1. Andrew Ng Twitterで210万人以上のフォロワーを持つAndrew…
新たな能力が明らかに:GPT-4のような成熟したAIのみが自己改善できるのか?言語モデルの自律的成長の影響を探る
研究者たちは、AlphaGo Zeroと同様に、明確に定義されたルールで競争的なゲームに反復的に参加することによってAIエージェントが自己発展する場合、多くの大規模言語モデル(LLM)が人間の関与がほとんどない交渉ゲームでお互いを高め合う可能性があるかどうかを調査しています。この研究の結果は、遠い影響を与えるでしょう。エージェントが独立に進歩できる場合、少数の人間の注釈で強力なエージェントを構築することができるため、今日のデータに飢えたLLMトレーニングに対して対照的です。それはまた、人間の監視がほとんどない強力なエージェントを示唆しており、問題があります。この研究では、エジンバラ大学とAIアレン研究所の研究者が、顧客と売り手の2つの言語モデルを招待して購入の交渉を行うようにしています。 図1:交渉ゲームの設定。彼らは2つのLLMエージェントを招待して、値切りのゲームで売り手と買い手をプレイさせます。彼らの目標は、より高い値段で製品を販売または購入することです。彼らは第三のLLMであるAI批評家に、ラウンド後に向上させたいプレイヤーを指定してもらいます。その後、批判に基づいて交渉戦術を調整するようにプレイヤーに促します。これを数ラウンド繰り返すことで、モデルがどんどん上達するかどうかを確認します。 顧客は製品の価格を下げたいと思っていますが、売り手はより高い価格で販売するように求められています(図1)。彼らは第三の言語モデルに批評家の役割を担ってもらい、取引が成立した後にプレイヤーにコメントを提供させます。次に、批評家LLMからのAI入力を利用して、再度ゲームをプレイし、プレイヤーにアプローチを改善するように促します。彼らは交渉ゲームを選んだ理由は、明確に定義されたルールと、戦術的な交渉のための特定の数量化目標(より低い/高い契約価格)があるためです。ゲームは最初は単純に見えますが、モデルは次の能力を持っている必要があります。 交渉ゲームのテキストルールを明確に理解し、厳密に遵守すること。 批評家LLMによって提供されるテキストフィードバックに対応し、反復的に改善すること。 長期的にストラテジーとフィードバックを反映し、複数のラウンドで改善すること。 彼らの実験では、モデルget-3.5-turbo、get-4、およびClaude-v1.3のみが交渉ルールと戦略を理解し、AIの指示に適切に合致している必要があるという要件を満たしています。その結果、彼らが考慮したモデルすべてがこれらの能力を示さなかったことが示されています(図2)。初めに、彼らはボードゲームやテキストベースのロールプレイングゲームなど、より複雑なテキストゲームもテストしましたが、エージェントがルールを理解して遵守することがより困難であることが判明しました。彼らの方法はICL-AIF(AIフィードバックからのコンテキスト学習)として知られています。 図2:私たちのゲームで必要な能力に基づいて、モデルは複数の階層に分けられます(C2-交渉、C3-AIフィードバック、C4-継続的な改善)。私たちの研究は、gpt-4やclaude-v1.3などの堅牢で適切に合致したモデルだけが反復的なAI入力から利益を得て、常に発展することができることを明らかにしています。 彼らは、AI批評家のコメントと前回の対話履歴ラウンドをコンテキストに応じたデモンストレーションとして利用しています。これにより、プレイヤーの前回の実際の開発と批評家の変更アイデアが、次のラウンドの交渉のためのフューショットキューに変換されます。2つの理由から、彼らはコンテキストでの学習を使用しています:(1)強化学習を用いた大規模な言語モデルの微調整は、高額であるため、(2)コンテキストでの学習は、勾配降下に密接に関連していることが最近示されたため、モデルの微調整を行う場合には、彼らが引き出す結論がかなり一般的になることが期待されます(資源が許される場合)。 人間からのフィードバックによる強化学習(RLHF)の報酬は通常スカラーですが、ICL-AIFでは、フィードバックが自然言語で提供されます。これは、2つのアプローチの注目すべき違いです。各ラウンド後に人間の相互作用に依存する代わりに、よりスケーラブルでモデルの進歩に役立つAIのフィードバックを検討しています。 異なる責任を負うときにフィードバックを与えられた場合、モデルは異なる反応を示します。バイヤー役のモデルを改善することは、ベンダー役のモデルよりも難しい場合があります。過去の知識とオンライン反復的なAIフィードバックを利用して、get-4のような強力なエージェントが常に意味のある開発を続けることができるとしても、何かをより高く売る(またはより少ないお金で何かを購入する)ことは、全く取引が成立しないリスクがあります。彼らはまた、モデルがより簡潔であるがより綿密(そして最終的にはより成功する)交渉に従事できることを証明しています。全体的に、彼らは自分たちの仕事がAIフィードバックのゲーム環境での言語モデルの交渉を向上させる重要な一歩になると期待しています。コードはGitHubで利用可能です。
機械学習の解説:アルゴリズム、モデル、および応用の明らかにする
この技術の変革的な可能性を引き出すために、様々なアルゴリズム、モデル、実践的な応用を発見してください
AIの10年間のレビュー
画像分類からチャットボット療法まで
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.