Learn more about Search Results 場所 - Page 3

自然言語処理:AIを通じて人間のコミュニケーションの力を解き放つ

この記事では、NLPの理解と進化について取り上げますAIがコミュニケーションの世界にどのように貢献できるかを学びましょう

「モダンデータウェアハウス」というテーマ

この物語では、他のデータプラットフォームアーキテクチャタイプと比較して、モダンなデータウェアハウスソリューション(DWH)の利点を明らかにしてみようと思います私はDWHが最も...

「RustコードのSIMD高速化のための9つのルール(パート2)」

SIMDを使用してRustコードを高速化するための9つの基本ルールを探求してくださいcoresimdについて学び、最適化技術を学びながらパフォーマンスを7倍に向上させましょう

Amazon DocumentDBを使用して、Amazon SageMaker Canvasでノーコードの機械学習ソリューションを構築してください

Amazon DocumentDB(MongoDB互換)とAmazon SageMaker Canvasの統合のローンチをお知らせできることを喜びますこれにより、Amazon DocumentDBのお客様はコードを書かずに生成AIや機械学習(ML)ソリューションを構築・使用することができますAmazon DocumentDBはフルマネージドのネイティブJSONドキュメントデータベースであり、重要な業務をスムーズかつ効率的に運用することができます

In Japanese キャプチャを超えて:近代的なボット対策におけるAIの進展の探求

この記事は、従来のCAPTCHAから最先端の身元確認へと進化していくデジタル防御戦略の実践を表しています

このAI論文では、アマゾンの最新の機械学習に関する情報が大規模言語モデルのバグコードについて明らかにされています

プログラミングは複雑であり、エラーのないコードを書くことは時には難しいです。コードの大規模言語モデル(Code-LLMs)はコード補完に役立つために開発されていますが、コードの文脈に潜んでいるバグを見落とすことがあります。この問題に対応するために、ウィスコンシン大学マディソン校とAmazon Web Servicesの研究者が、コード生成中に潜在的なバグを検出するためのLLMsの性能向上についての研究を行いました。 コード-LLMsを活用した自動プログラム修正の研究は、プログラミングのバグの特定と修正の負担を軽減することを目指しています。他のドメインの敵対的な例と同様に、意味を保持したままの小さなコード変換は、コード学習モデルの性能を低下させることがあります。CodeXGLUE、CodeNet、HumanEvalなどの既存のベンチマークは、コード補完とプログラム修復の研究に重要な役割を果たしています。データの利用可能性を高めるために、バグを生成するためのコードミュータントやバグを作成する方法などが開発されています。 統合開発環境における重要な機能であるコード補完は、コードをベースとするTransformerベースの言語モデルの進化とともに進化してきました。しかし、これらのモデルはソフトウェア開発でよく起こるバグの存在を見落とすことが多いです。この研究では、コードの文脈に潜在的なバグが存在するバギーコード補完(bCC)の概念を紹介し、そのようなシナリオでのCode-LLMsの振る舞いを探求しています。バグを含んだデータセットであるバギーHumanEvalとバギーFixEvalを導入し、合成的なバグと現実的なバグの存在下でCode-LLMsの評価を行い、著しい性能低下が明らかになりました。この問題に対処するために、ポストミティゲーション手法が探求されています。 提案されたミティゲーション手法には、バギーフラグメントを削除する「削除して補完」、補完後にバグを修正する「補完して書き直す」、補完前にコード行を書き直してバグを解決する「書き直して補完する」などがあります。合格率によって測定されるパフォーマンスは、補完して書き直すと書き直して補完するが有利です。これらの手法では、RealiTやINCODER-6BのようなCode-LLMsがコードフィクサーとして機能します。 潜在的なバグの存在は、Code-LLMsの生成パフォーマンスを著しく低下させます。1つのバグにつき合格率が50%以上減少します。バグの場所の知識を持つヒューリスティックオラクルは、バギーHumanEvalとバギーFixEvalの間に顕著なパフォーマンスギャップを示し、バグの位置の重要性を強調しています。尤度ベースの手法は、2つのデータセットで異なるパフォーマンスを示し、バグの性質が集約方法の選択に影響を与えることを示しています。バグの存在下でのパフォーマンス改善を提案する削除して補完や書き直して補完などのポストミティゲーション手法もありますが、まだギャップが存在し、潜在的なバグとのコード補完の改善についてのさらなる研究の必要性を示しています。 この研究では、以下の要点でまとめることができます: この研究では、bCCと呼ばれる新しいタスクが紹介されています。 bCCは、潜在的なバグが存在するコードの文脈から機能的な実装を生成します。 この研究は、バギーHumanEvalとバギーFixEvalという2つのデータセットで評価されています。 Code-LLMsのパフォーマンスは著しく低下し、テストケースの合格率が5%以下になります。 削除して補完、書き直して補完などのポストミティゲーション手法が提案されていますが、まだパフォーマンスのギャップが存在します。 この研究は、bCCにおけるCode-LLMsの理解を向上させるものです。 この研究は、潜在的なバグの存在下でコード補完を改善する方法を示唆しています。

データの汚染を防ぐためのサイバーセキュリティ対策

新しく発展している人工知能(AI)や機械学習(ML)のような技術は、世界中の産業や日常生活の改善に不可欠ですしかし、悪意のある者たちは常にこれらの新興技術をより邪悪なものに変える方法を探し求めており、データの悪用は深刻な問題となっていますそれに備える必要があります何が...

ルーシッドドリーマー:インターバルスコアマッチングを介した高品位のテキストから3D生成

最近のテキストから3DジェネレーティブAIフレームワークの進歩は、生成モデルにおける重要な節目を示していますこれらは、数多くの現実世界のシナリオで3Dアセットを作成する新たな可能性を開拓していますデジタル3Dアセットは現在、私たちのデジタル存在において不可欠な場所を占めており、複雑な環境やオブジェクトとの包括的な視覚化や対話を可能にしています

ミストラルAIの最新のエキスパート(MoE)8x7Bモデル

ミストラルAIのMoE 8x7Bを発見しましょうこれはMixture of Experts frameworkを用いた「スケールダウンされたGPT-4」ですこのモデルがどのように印象的な多言語対応能力と効率性を実現しているか、さまざまなタスクで競合モデルを上回るかを学んでください

『ELS+ Stream Tool』

ELS+は、企業がデータから有益な洞察を抽出し、意思決定を改善し、パフォーマンスを向上させるためのAIパワードアナリティクスツールです

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us