Learn more about Search Results プルリクエスト - Page 3
- You may be interested
- 「データ管理におけるメタデータの役割」
- ソウル国立大学の研究者たちは、効率的か...
- AIはデータ専門家の役割にどのような影響...
- 「Reactを使用して、エキサイティングなデ...
- 「MATLABとAmazon SageMakerによる機械学習」
- 「Plotly Graph Objectsを使用してウォー...
- Amazon SageMakerを使用した生成型AIモデ...
- 「ダウンフォール」の欠陥が世代を超えた...
- 「UnbodyとAppsmithを使って、10分でGoogl...
- ‘製品およびエンジニアリングリーダーのた...
- 「生成AIで企業検索を変革する」
- このチューリング賞を受賞した研究者は、...
- チャットGPTの落とし穴を乗り越える方法
- 「データサイエンスを利用した需要ベース...
- ゼロから大規模言語モデルを構築するため...
「機械学習プロジェクトのための最高のGitHubの代替品」
「GitHubに似た機能と機能を提供するいくつかのプラットフォームやサイトを見てみましょうこれらは簡単にGitHubに対抗できる堅牢な機能を備えています」
LLMOps:ハミルトンとのプロダクションプロンプトエンジニアリングパターン
「大規模言語モデル(LLM)に送信する内容は非常に重要ですわずかな変化や変更でも、出力に大きな影響を与えることがありますので、製品が進化するにつれて、プロンプトも進化させる必要があります...」
「機械学習のためのソフトウェアエンジニアリングパターン」
「フロントエンドまたはバックエンドエンジニアの同僚と話したことはありますか?彼らがコードの品質にどれだけ気を使っているかに気づいたことがありますか?読みやすく、再利用可能で効率的なコードを書くことは、ソフトウェア開発コミュニティで常に課題となっていますこのトピックについては、GithubのプルリクエストやSlackのスレッドで毎日無数の会話が行われています最適な適応方法はどうするか...」
「Amazon LexとAmazon Kendra、そして大規模な言語モデルを搭載したAWSソリューションのQnABotを使用して、セルフサービス型の質問応答を展開してください」
「Amazon Lexによるパワーを利用したAWSのQnABotソリューションは、オープンソースのマルチチャネル、マルチ言語の会話型チャットボットですQnABotを使用すると、自己サービスの会話型AIを迅速にコンタクトセンター、ウェブサイト、ソーシャルメディアチャネルに展開することができ、コストを削減し、ホールド時間を短縮し、顧客体験とブランドの評価を向上させることができますこの記事では、QnABotの新しい生成型AI機能を紹介し、これらの機能を使用するためのチュートリアルを作成、展開、カスタマイズする方法について説明しますまた、関連するユースケースについても議論します」
「大規模なモデルの時代のプログラマー」
大規模モデルは開発者のプロセスを完全に変えましたこれを読んだ後、AIGCが開発効率を向上させる方法について、まったく新しい視点を持つでしょう
「Pantsを使用してMachine LearningのMonorepoを整理する」
「過去に、ユーティリティコードの一部をプロジェクト間でコピーして貼り付けたことはありますか?その結果、同じコードの複数のバージョンが異なるリポジトリに存在することになりましたか?または、数十のプルリクエストを作成する必要があったことはありますか...」
ML MonorepoのPantsでの組織化
「プロジェクト間でユーティリティコードの一部をコピー&ペーストしたことがありますか?その結果、同じコードの複数のバージョンが異なるリポジトリに存在することになりましたか?または、データを保存するGCPバケットの名前が更新された後、数十のプロジェクトにプルリクエストを行わなければなりませんでしたか?上記のような状況はあまりにも頻繁に発生します...」
「Stitch FixにおけるMLプラットフォーム構築からの学び」
この記事は元々、MLプラットフォームポッドキャストのエピソードであり、Piotr NiedźwiedźとAurimas GriciūnasがMLプラットフォームの専門家と一緒に、デザインの選択肢、ベストプラクティス、具体的なツールスタックの例、そして最高のMLプラットフォームの専門家からの実世界の学びについて話し合っていますこのエピソードでは、Stefan KrawczykがMLを構築する際に得た学びを共有しています...
車両ルーティング問題 正確な解法とヒューリスティック解法
「車両ルーティング問題(VRP)は、与えられた一連の顧客をサービスするために、車両のフリートが実行する最適なルートセットを決定することを目指していますその多くの応用と挑戦的な性質により…」
「Huggy Lingo:Hugging Face Hubで言語メタデータを改善するための機械学習の利用」
Huggy Lingo: Hugging Face Hubで言語メタデータを改善するために機械学習を使用する 要約: 私たちは機械学習を使用して、言語メタデータのないHubデータセットの言語を検出し、このメタデータを追加するために司書ボットがプルリクエストを行っています。 Hugging Face Hubは、コミュニティが機械学習モデル、データセット、アプリケーションを共有するリポジトリとなっています。データセットの数が増えるにつれて、メタデータは自分のユースケースに適したリソースを見つけるための重要なツールとなっています。 このブログ投稿では、Hugging Face Hubでホストされるデータセットのメタデータを改善するために機械学習を使用したいくつかの初期実験を共有します。 Hub上のデータセットの言語メタデータ Hugging Face Hubには現在約50,000の公開データセットがあります。データセットで使用される言語に関するメタデータは、データセットカードの先頭にあるYAMLフィールドを使用して指定することができます。 すべての公開データセットは、メタデータ内の言語タグを使用して1,716の一意の言語を指定しています。ただし、指定される言語のいくつかは、異なる方法で指定されることになります。たとえば、IMDBデータセットでは、YAMLメタデータにen(英語を示す)が指定されています。 IMDBデータセットのYAMLメタデータのセクション 英語がHub上のデータセットで遥かに最も一般的な言語であることは驚くべきことではありません。Hub上のデータセットの約19%が言語をenとしてリストしています(enのバリエーションを含めない場合であり、実際の割合はおそらくはるかに高いでしょう)。 Hugging Face Hub上のデータセットの頻度とパーセンテージ頻度 英語を除外した場合、言語の分布はどのようになりますか?いくつかの支配的な言語のグループがあり、その後は言語が出現する頻度が比較的滑らかに減少していることがわかります。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.