Learn more about Search Results データサイエンスブログマラソン - Page 3
- You may be interested
- 「IBMの「脳のような」AIチップが、環境に...
- 「このAIニュースレターが必要なすべて #59」
- 「月光スタジオのAIパワード受付アバター...
- MITとUC Berkeleyの研究者は、最小限の努...
- 勝利チームの構築:従業員のエンゲージメ...
- AIが置き換えることができない仕事
- 「LLMとGUIの協力:チャットボットを超えて」
- 「2024年のデータエンジニアリング&AI X...
- VoAGI ニュース、9月27日:ChatGPT プロジ...
- 注釈の習得:LabelImgとのシームレスなDet...
- 「ラフと共にパイソンのコーディングスタ...
- 「NASAが宇宙探査用に3Dプリントでロケッ...
- ケンブリッジ大学の研究者が50,000枚の合...
- StarCoder:コードのための最先端のLLM
- アマゾンのSageMakerジオスペーシャル機能...
「自己改善のための生成AIと強化学習の統合」
イントロダクション 人工知能の進化する領域において、二つの主要な要素が刷新を果たしました:生成型AIと強化学習。これらの最新技術である生成型AIと強化学習は、自己改善型のAIシステムを作り出す可能性があり、機械が自律的に学習し適応する夢を現実のものにするための一歩を踏み出しています。これらのツールは、自己改善型のAIシステムの道を開き、自己学習および自己適応する機械のアイデアに近づくことをもたらしています。 最近のAIの進歩は驚くべきものです。人間の言語を理解することから、コンピュータが世界を認識し解釈するのを助けるまで、様々な領域で進歩を遂げてきました。GPT-3のような生成型AIモデルとDeep Q-Networksのような強化学習アルゴリズムは、この進歩の最前線に立っています。これらの技術は個別に変革をもたらしてきましたが、それらが融合することによってAIの能力の新たな次元が開かれ、世界の限界を緩和しています。 学習目標 強化学習とそのアルゴリズム、報酬構造、強化学習の一般的なフレームワーク、状態行動ポリシーに関する必要な知識と深い知識を獲得し、エージェントがどのように意思決定を行うかを理解する。 これらの二つの分野がどのように共生的に組み合わさることで、より適応性の高いインテリジェントシステムを創り出すことができるかを調査する。 健康医療、自動車、コンテンツ制作などの分野で、生成型AIと強化学習を統合することによる効果と適応性を示すさまざまな事例研究を学び分析する。 TensorFlow、PyTorch、OpenAIのGym、GoogleのTF-AgentsなどのPythonライブラリに精通し、これらの技術の実装における実践的なコーディング経験を得る。 この記事はデータサイエンスブログマラソンの一環として公開されました。 生成型AI:機械に創造性を与える 生成型AIモデルは、OpenAIのGPT-3のように、自然言語や画像、音楽などを生成するように設計されています。これらのモデルは、与えられた文脈で次に何が起こるかを予測する原理に基づいて動作します。これらは、自動化されたコンテンツ生成から人間の会話を模倣するチャットボットまで、あらゆることに使用されてきました。生成型AIの特徴は、学習したパターンから新しいものを作り出す能力です。 強化学習:AIに決定を学ぶ 出典 – Analytics Vidhya 強化学習(RL)はもう一つの画期的な分野です。これは、人間のように試行錯誤から学ぶAIを実現する技術です。これは、Dota 2や囲碁などの複雑なゲームをAIに教えるために使用されています。RLエージェントは、行動に対して報酬やペナルティを受け取り、このフィードバックを使用して時間とともに改善します。ある意味では、RLはAIに自律性を与え、動的な環境での意思決定を可能にします。 強化学習のフレームワーク このセクションでは、強化学習の主要なフレームワークについて解説します。 実行主体:エージェント 人工知能と機械学習の領域では、「エージェント」という用語は、指定された外部環境とやり取りするための計算モデルを指します。その主な役割は、目標を達成するか、一連のステップで最大の報酬を蓄積するために意思決定を行い、行動を起こすことです。 The…
「クリエイティブな超能力を持つPix2Pixの解放 – 画像の変換」
イントロダクション 子供が描く絵を生き生きとしたイメージに変える特別なコンピュータプログラムを想像してみてください。子供たちが描くカラフルで想像力に溢れる絵を、まるで魔法のように本物のようなイメージに変換できるのです!それが「Pix2Pix」と呼ばれるプログラムです。カードのデッキで素晴らしいトリックを披露するマジシャンのように、Pix2Pixは絵に関して素晴らしいことを成し遂げるのです。Pix2Pixはコンピュータが画像を理解し、処理する方法に大きな変化をもたらしました。それによって、作成される画像について細かい制御ができるようになります。まるで画像を作成したり変更したりするための超能力のようです! 出典: X.com 学習目標 Pix2Pixが何か、どのように機能し、実際の世界での応用を探求することを学ぶ Pix2Pixを使用して、建物の正面データセットを使用して絵を写真に変換してみる Pix2Pixの動作や問題解決に対する実装の理解と、画像から画像への変換タスクが直面している問題をどのように解決するかの理解 本記事はデータサイエンスブログマラソンの一環として公開されました。 一般対抗ネットワーク(GAN) 人工知能の中で最もエキサイティングな最近の発明の一つが、生成的対抗ネットワークまたはGANです。これらの強力なニューラルネットワークは、画像、音楽、テキストなどを含む新しいコンテンツを作成できます。GANは、生成器(コンテンツを作成する)と識別器(作成されたコンテンツを判断する)の2つのニューラルネットワークで構成されています。 生成器はコンテンツの作成に責任を持ちます。ランダムなノイズやデータから始め、それを徐々に意味のあるものに洗練させます。例えば、画像生成では、ゼロから画像を作成することができます。ランダムなピクセル値を調整して美しい本物の画像に似せることから始めます。識別器の役割は、生成器が作成したコンテンツを評価することです。コンテンツが本物か偽物かを判断します。より多くのコンテンツを調べ、生成器にフィードバックを提供することで、訓練が進むにつれて識別器はますます向上します。 出典: Neptune.ai GANの教育プロセス全体は、対抗トレーニングと呼ばれています。非常に理解しやすいものです。生成器は最初は完全ではないコンテンツを作成します。識別器はコンテンツを評価します。すなわち、本物と偽物を区別しようとします。生成器は識別器からフィードバックを受け取り、より信じられるようにコンテンツを調整します。こうして、前よりも良いコンテンツを提供します。生成器の改善に応じて、識別器は偽物のコンテンツを検出する能力を向上させます。このようにして、対抗トレーニングが続き、GANはますます強力になります。 Pix2Pix 画像の変換と操作の概念は、従来の画像処理技術から始まりました。これには画像のリサイズ、色補正、フィルタリングなどが含まれます。ただし、これらの従来の方法は、画像から画像への変換などのより複雑なタスクには限界がありました。機械学習、特にディープラーニングは、画像変換の分野で革命をもたらしました。最近では、CNNs(畳み込みニューラルネットワーク)は画像処理タスクの自動化に重要な役割を果たしています。しかし、生成的対抗ネットワーク(GANs)の開発は、画像から画像への変換における重要な成果を意味しました。 Pix2Pixは、画像翻訳タスクに使用されるディープラーニングモデルです。Pix2Pixの核となるアイデアは、一つのドメインからの入力画像を他のドメインで対応する出力画像を生成することです。つまり、一つのスタイルから別のスタイルへの画像変換を行います。このアプローチは条件付きGANと呼ばれます。Pix2Pixは、入力画像が生成器を条件付ける条件付き形式のGANアーキテクチャを活用しています。条件に基づいて出力が生成されます。 出典: Phillipi 条件付き生成敵対ネットワーク(CGAN)は、生成された画像に対して正確な制御を可能にするGANフレームワークの高度なバージョンであり、特定のカテゴリの画像を生成することができます。Pix2Pix GANは、別の与えられた画像の存在に依存する画像の生成プロセスを持つCGANの一例です。画像では、pix2pixが作成した驚異を見ることができます。私はラベルからストリートシーン、ラベルからファサード、白黒からカラー、空中写真から実地図、昼の写真から夜景、エッジに基づいた写真などを作成できます。 画像から画像への変換の課題 画像から画像への変換は、特に目標が一つのドメインから別のドメインの画像に変換することで、内容と構造を慎重に保持する場合には、困難なコンピュータビジョンのタスクです。画像から画像への変換の課題は、入力と出力のドメイン間の複雑な関係を捉えることにあります。この問題への画期的な解決策の一つはPix2Pixです。…
「セグミンドの生成AIによるエンパワーリングなロゴデザイン」
イントロダクション ブランドの世界では、ロゴがブランドの本質を象徴しています。従来、ロゴの作成にはデザイナーの才能と修正が必要でしたが、セグマインドが登場し、生成的な人工知能(AI)によってロゴデザインを変革しました。セグマインドのAI駆動アプローチはデザインプロセスを簡素化し、創造性を引き出し、制限のないロゴの創造を可能にします。変革の概念である「生成的AI」はデザインデータを学習し、効率的にロゴを自律的に作成することで、人間の創造性を補完し、費用効果の高いソリューションを提供します。本記事では、技術的な優位性から実世界の応用まで、セグマインドの生成的AIがロゴデザインに与える影響について詳しく解説します。技術とデザインの融合がロゴ作成を革新する方法を発見してください。 出典:Adweek 学習目標 ロゴデザインがブランディングにおいて重要である理由やデザインとマーケティングにおいてなぜ重要なのかについて理解する。 主に生成的AIのような人工知能の変革的な役割をロゴデザインにおいて発見し、創造プロセスをどのように向上させるかについて知る。 セグマインドの革新的なプラットフォームについて学び、AIを人間の創造性と組み合わせてロゴデザインを再定義する方法について理解する。 セグマインドの生成的AIの技術的側面に深く入り、ディープラーニングと大規模なデザインデータセットを活用する方法を理解する。 ビジネス、スタートアップ、個人ブランディング、教育などの分野でのAI生成ロゴの実際的な用途を探索し、異なる産業にどのような利益をもたらすかを知る。 ロゴデザインにおける最新トレンド、ミニマリズム、ロゴを通じたストーリーテリング、AIがロゴ作成の未来を形作る役割などについての洞察を得る。 本記事はデータサイエンスブログマラソンの一環として公開されました。 強力なセグマインドの生成的AI 人工知能とデザインの素晴らしい世界において、セグマインドは真のパワーハウスとして進化し、ロゴデザインのための革新的なソリューションを先駆的に提供しています。セグマインドの生成的人工知能は革新、精度、芸術的な才能の証です。セグマインドのロゴデザインへの取り組みは、堅牢で緻密に作り込まれたプラットフォームから始まります。最先端の生成的AIモデルに基づくこのプラットフォームは、ロゴデザインの限界を再定義する創造の触媒です。AIの技術的な優位性をデザイナーの芸術的感性とシームレスに統合し、視覚的に優れただけでなくブランドのアイデンティティと深く共鳴するロゴを生み出します。 セグマインドのAIアルゴリズムの技術的な驚異 セグマインドが他と異なる点は、技術の卓越性に対する献身です。生成的AIのアルゴリズムの基盤となるのは、デザイン原則、美学、ブランドアイデンティティに関する広範なデータに基づいて訓練されたニューラルネットワークです。これらのアルゴリズムはロゴデザインの複雑さを解剖し、カラーパレット、タイポグラフィ、視覚的なモチーフを解読することができます。 セグマインドのAIモデルの核心は、学習と適応の能力にあり、継続的にその創造的な結果を改善します。ディープラーニングを活用してパターンを見つけ出し、生成されるロゴが各ブランドのユニークな本質とシームレスに調和することを保証します。さらに、セグマインドのAIは豊富なデザインの歴史に基づいて訓練され、多様な視覚要素や芸術的スタイルからインスピレーションを得ます。この知識の深さにより、プラットフォームは普通ではないロゴを創り上げ、クライアントに幅広い創造的可能性を提供します。 セグマインドの生成的AIは芸術的な共同創作者であり、デザインのマスターです。創造プロセスを補完し、ロゴデザインを新たな高みに押し上げますが、ブランドの本質と個性を守ります。セグマインドの生成的AIを用いたロゴデザインは、もはや手作業に限定されないものです。これは人間の直感と人工知能が調和する場であり、創造性には制約がありません。このパワーハウスはロゴデザインを革新し、創造的美学の中で見逃せない存在です。 出典:Segmind ロゴデザインにジェネレーティブAIを使用する利点 効率性:ジェネレーティブ人工知能は、従来の複数の修正や長いデザインサイクルを必要とするロゴデザインプロセスを大幅に加速させます。 AIは迅速にロゴのコンセプトを生成でき、時間とリソースの両方を節約します。 費用対効果:特にスタートアップや中小企業の場合、AIはプロのデザイナーやデザインエージェンシーを雇う手頃な代替手段を提供します。高品質のロゴを手に入れるための予算にやさしい方法です。 インスピレーションとアイデア:人工知能はデザイナーやビジネスオーナーのインスピレーションの源です。新鮮なアイデアやデザイン要素を生成し、創造性を引き出し、革新的なロゴのコンセプトを探求するのに役立ちます。 カスタマイズ:ジェネレーティブAIにより、ロゴのカスタマイズが可能になります。ユーザーは色の好み、タイポグラフィ、スタイルを提供し、ロゴを特定のニーズに合わせることができます。…
「Python を使用した簡単な株式トレーディングアルゴリズムの構築と検証」
イントロダクション アルゴリズムトレーディングは広く受け入れられているトレーディング戦略であり、株式取引の方法を革新しました。ますます多くの人々が株式に投資し、トレーディング戦略を自動化して副収入を得ています。このチュートリアルでは、MACD、SMA、EMAなどの基本的なテクニカルインジケータを使用して株式取引アルゴリズムを構築し、実際のパフォーマンス/リターンに基づいて最適な戦略を選択する方法をPythonを使用して完全に学習します。 学習目標 アルゴリズムトレーディングとは何かを知る。 テクニカルインジケータを使用してPythonで簡単な株式取引アルゴリズムを構築し、買い注文と売り注文のシグナルを生成する方法を学ぶ。 取引戦略を実装し、Pythonで自動化する方法を学ぶ。 平均リターンに基づいて最適な取引戦略を比較・選択する方法を学ぶ。 この記事はデータサイエンスブログマラソンの一環として公開されました。 免責事項 – これは金融アドバイスではありません。このプロジェクトで行われるすべての作業は教育目的であります。 アルゴリズムトレーディングとは何ですか? アルゴリズムトレーディングは、予め定義されたルールと戦略に基づいて自動化されたコンピュータプログラムを使用して金融資産を取引する方法です。これには、統計的アービトラージ、トレンドフォロー、平均回帰など、さまざまな取引戦略が含まれます。 アルゴリズムトレーディングにはさまざまなタイプがあります。その一つがハイフリクエンシートレーディングであり、小さな価格変動を利用するためのほとんど遅延のない高速取引を行います。もう一つがニュースベースのトレーディングであり、ニュースや他の市場イベントに基づいて取引を行います。 この記事では、テクニカルインジケータとローソク足パターン検出を使用してPythonを使用して株式取引を行います。 Pythonアルゴリズムを使用した株式取引の分析方法 Pythonを使用して株価を分析し、トレンドを把握し、取引戦略を開発し、シグナルを設定して株式取引を自動化することができます!Pythonを使用したアルゴリズムトレーディングのプロセスには、データベースの選択、特定のライブラリのインストール、歴史的データの抽出など、いくつかのステップがあります。それぞれのステップを詳しく説明し、簡単な株式取引アルゴリズムを構築する方法を学びましょう。 データセットの選択 公開されている株式は何千もあり、アルゴリズムを構築するために任意の株式セットを考慮できます。ただし、基本的な要素やテクニカルが比較可能である類似の株式を考慮することは常に良い選択肢です。 この記事では、Nifty 50株を考慮します。Nifty 50指数には、時価総額、流動性、セクターの代表性、財務パフォーマンスなどのさまざまな要素に基づいて選ばれたインドのトップ50の企業が含まれています。この指数はインド株式市場のパフォーマンスを測定するためのベンチマークとして広く使用されており、小型株や中型株に投資する場合と比較して、これらの企業に投資する際のリスクは少なくなります。この記事では、分析のためにWIPROを考慮します。この記事で説明される分析アプローチは、forループ内で各株の関数を呼び出すことによって、類似の株式セットで実行できます。 必要なライブラリのインストール パンダ、ナンパイ、マットプロットリブと共にyfinanceとpandas_taなどのデフォルトのライブラリを使用します。…
「先進的なマルチモーダル生成AIの探求」
イントロダクション テクノロジーの進歩する現代において、興奮すべき展開が現れています – 高度なマルチモーダルジェネレーティブAI。この最先端技術は、コンピューターをより革新的かつ優れたものにし、コンテンツの生成と理解を促進するものです。テキスト、画像、音声とシームレスに連携し、情報を生成するデジタルアシスタントを想像してみてください。この記事では、この技術がリアルタイム/実用的な応用や例でどのように機能するかを見ていき、さらには簡単なコードスニペットを提供して理解可能な形で説明します。それでは、進んで高度なマルチモーダルジェネレーティブAIの世界にダイブしましょう。 出典- Microsoft 次のセクションでは、入力から融合、そして出力というマルチモーダルAIのコアモジュールを解き明かし、この技術がシームレスに機能する仕組みについて明確な理解を得ましょう。さらに、その能力と実世界での使用例を示す実用的なコード例も探求します。マルチモーダルAIは、私たちが想像してきた方法で機械が理解し、コミュニケーションするようになる、よりインタラクティブでクリエイティブかつ効率的なデジタル時代への飛躍です。 学習目標 シンプルな用語で高度なマルチモーダルジェネレーティブAIの基礎を理解する。 入力、融合、出力モジュールを通じてマルチモーダルAIがどのように機能するかを探求する。 実際のコード例を通じてマルチモーダルAIの内部機能を理解する。 実世界の使用例についてマルチモーダルAIの実際のアプリケーションを探求する。 シングルモーダルAIとマルチモーダルAIの違いとそれらの能力を区別する。 実際のシナリオでマルチモーダルAIを展開する際に考慮すべき要素に深入りする。 この記事はデータサイエンスブログマラソンの一環として公開されました。 高度なマルチモーダルジェネレーティブAIの理解 出典- LinkedIn あなたが信じられないほど賢く、さまざまな方法であなたを理解するロボットの友達、ロビーがいると想像してみてください。ビーチでの楽しい一日の面白い話をロビーに伝えたい場合、話しかける、アート/絵を描く、写真を見せるなど、さまざまな方法で彼とコミュニケーションすることができます。そして、ロビーはあなたの言葉、画像、その他を理解/ゲットすることができます。異なる方法でコミュニケーションし理解する能力が「マルチモーダル」の本質です。 マルチモーダルAIはどのように機能するのか? マルチモーダルAIは、テキスト、画像、音声など、さまざまなデータモードでコンテンツを理解し生成するように設計されています。これを実現するために、次の3つの主要なモジュールを使用します。 出典- Daffodil 入力モジュール…
「データサイエンスを利用した需要ベースのホテルルーム価格設定をMLOpsで実装する」
イントロダクション COVID-19の間、ホスピタリティ産業は売上の大幅な減少を経験しました。したがって、人々がより多く旅行する中でも、顧客の獲得は課題であり続けます。我々はこの問題に対処するためにMLツールを開発し、適切な価格設定を行い、宿泊率を向上させ、ホテルの収益を増やすためのフィッティングルームを提供します。ホテルのデータセットを使用して、正しい部屋の価格を選択し、宿泊率を増加させ、ホテルの収益を増やすAIツールを構築します。 学習目標 ホテルの部屋の適切な価格設定の重要性。 データのクリーニング、データセットの変換、データの前処理。 ホテルの予約データを使用したマップと視覚化プロットの作成。 データサイエンスで使用されるホテルの予約データ分析の現実世界への応用。 Pythonプログラミング言語を使用したホテルの予約データ分析の実施。 この記事はデータサイエンスブログマラソンの一部として公開されました。 ホテルルーム価格データセットとは何ですか? ホテルの予約データセットには、ホテルタイプ、成人の人数、滞在時間、特別な要件など、異なる情報源からのデータが含まれています。これらの値は、ホテルの部屋の価格予測やホテルの収益の増加に役立ちます。 ホテルルーム価格分析とは何ですか? ホテルの部屋の価格分析では、データセットのパターンやトレンドを分析します。この情報を使用して、価格設定や運営に関する意思決定を行います。これらの要素はいくつかの要因に依存します。 季節性: 繁忙期(祝日など)において、部屋の価格は著しく上昇します。 需要: イベントの祝賀やスポーツイベントなど、需要が高まると部屋の価格も上昇します。 競争: 近くのホテルの価格がホテルの部屋の価格に大きく影響を与えます。エリア内のホテルの数が多いほど、部屋の価格は低くなります。 設備: プール、スパ、ジムなどの設備があるホテルは、これらの施設に対してより高い料金を請求します。 場所: 中心地のホテルは、郊外のホテルと比べて高い料金を請求することがあります。 適切なホテルの部屋の価格設定の重要性…
ニューラルネットワークの活性化関数
紹介 活性化関数は、ニューラルネットワークの卓越した機能の秘密の鍵です。これらは、入力に基づいてニューロンが「起動する」か休止状態にするかを決定する意思決定者です。これは複雑な技術のように聞こえるかもしれませんが、活性化関数の理解は人工ニューラルネットワークに潜入する人々にとって重要です。 このブログ記事では、機械学習に初めて触れる人でも理解しやすいように、活性化関数の謎を解き明かします。ニューラルネットワークの隠れたポテンシャルを引き出すための鍵として考えてください。この記事の終わりまでに、活性化関数が何であり、深層学習におけるその重要性を理解するでしょう。 ですから、あなたが新進のデータサイエンティストであるか、機械学習の熱心な愛好家であるか、または単にニューラルネットワーク内で起こる魔法に興味があるかどうかにかかわらず、シートベルトを締めてください。 人工知能: 活性化関数の心臓部を探索する旅に出ましょう。 学習目標 活性化関数の役割とニューラルネットワーク内での変換を理解する。 一般的に使用される活性化関数とその利点と欠点を探索する。 特定の活性化関数のシナリオを認識し、勾配フローへの影響を理解する。 この記事はデータサイエンスブログマラソンの一部として公開されました。 活性化関数とは何ですか? 活性化関数はニューラルネットワーク内の意思決定者です。各ニューロンに関連付けられ、ニューロンのアクティベーションを決定する重要な役割を果たします。このアクティベーションの決定は、各ニューロンがネットワークの予測に関連する入力を受け取っているかどうかに依存します。 活性化関数はゲートキーパーとして機能し、特定の情報のみを通過させ、ネットワークの出力に寄与します。ニューラルネットワークに重要な非線形性を追加し、データ内の複雑なパターンを学習および表現することができるようにします。 この重要な概念をより深く掘り下げるために、いくつかの一般的な活性化関数とその特徴を探索してください。活性化関数はまた、各ニューロンの出力を正規化し、通常は0から1または-1から1の特定の範囲内に制約します。 ニューラルネットワークでは、入力が入力層内のニューロンに供給されます。各ニューロンは重みと関連付けられており、ニューロンの出力は入力とそれに対応する重みとの積で計算されます。この出力は次の層に渡されます。 活性化関数は、現在のニューロンに入力される入力と次の層に送信される出力の間の数学的な「ゲート」です。これはステップ関数として非常に単純であり、定義されたルールやしきい値に基づいてニューロンの出力をオンまたはオフに効果的に切り替えることができます。 重要なことは、ニューラルネットワークは非線形な活性化関数を使用しています。これらの関数は、ネットワークが複雑なデータパターンを理解し、与えられた問題に関連するほとんどの関数を計算して学習し、最終的に正確な予測を行うのに役立ちます。 さらに学ぶ: 活性化関数 | 深層学習の基礎 一般的に使用される活性化関数 シグモイド関数…
「ベクターデータベースを使用してLLMアプリを作成する方法」
イントロダクション 人工知能の領域では、OpenAIのGPT-4、AnthropicのClaude 2、MetaのLlama、Falcon、GoogleのPalmなど、Large Language Models(LLMs)やGenerative AIモデルが問題解決の方法を革新しています。LLMsはディープラーニングの技術を使用して、自然言語処理のタスクを実行します。この記事では、ベクトルデータベースを使用してLLMアプリを構築する方法を紹介します。おそらくAmazonの顧客サービスやFlipkartのDecision Assistantのようなチャットボットと対話したことがあるかもしれません。それらは人間に近いテキストを生成し、実際の会話と区別がつきにくいインタラクティブなユーザーエクスペリエンスを提供します。しかし、これらのLLMsは最適化する必要があります。特定のユースケースに対して非常に関連性が高く具体的な結果を生成するようにするためには。 例えば、Amazonの顧客サービスアプリに「Androidアプリで言語を変更する方法は?」と尋ねた場合、正確にこのテキストでトレーニングされていないため、答えることができないかもしれません。ここでベクトルデータベースが助けになります。ベクトルデータベースは、ドメインのテキスト(この場合はヘルプドキュメント)と、注文履歴などを含むすべてのユーザーの過去のクエリを数値の埋め込みとして保存し、リアルタイムで似たようなベクトルの検索を提供します。この場合、このクエリを数値ベクトルにエンコードし、ベクトルデータベース内で類似のベクトルを検索し、最も近い隣人を見つけるために使用します。このようなヘルプを通じて、チャットボットはユーザーを正しくAmazonアプリの「言語設定の変更」セクションに案内できます。 学習目標 LLMsの動作原理、制約、およびベクトルデータベースの必要性について学ぶ。 埋め込みモデルの紹介と、アプリケーションでのエンコードと使用方法について学ぶ。 ベクトルデータベースとそれがLLMアプリケーションアーキテクチャの一部である方法について学ぶ。 ベクトルデータベースとTensorFlowを使用してLLM/Generative AIアプリケーションをコーディングする方法を学ぶ。 この記事はデータサイエンスブログマラソンの一環として公開されました。 LLMsとは何ですか? Large Language Models(LLMs)は、自然言語を処理し理解するためにディープラーニングアルゴリズムを使用する基本的な機械学習モデルです。これらのモデルは大量のテキストデータでトレーニングされ、言語のパターンやエンティティの関係を学習します。LLMsは、言語の翻訳、感情分析、チャットボットの会話などのさまざまなタイプの言語タスクを実行することができます。彼らは複雑なテキストデータを理解し、エンティティとそれらの間の関係を識別し、統率的で文法的に正確な新しいテキストを生成することができます。 LLMsについてもっと詳しく読む。 LLMsはどのように動作するのですか? LLMsは大量のデータ(しばしばテラバイト、さらにはペタバイト)を使用してトレーニングされ、数十億または数兆のパラメータを持ち、ユーザーのプロンプトやクエリに基づいて関連する応答を予測および生成することができます。入力データをワード埋め込み、自己注意層、およびフィードフォワードネットワークを通じて処理し、意味のあるテキストを生成します。LLMアーキテクチャについてもっと読むことができます。 LLMsの制約 LLMsは非常に高い精度で応答を生成するように見えますが、多くの標準化テストでは人間を超える結果を示すことがありますが、それでもこれらのモデルには制約があります。まず第一に、彼らは自身のトレーニングデータに頼ることだけで推論を行い、データ内の特定の情報や現在の情報が欠けているかもしれません。これにより、モデルが誤ったまたは異常な応答を生成することがあります(「幻覚」とも言われます)。これを軽減するための取り組みが継続中です。第二に、モデルはユーザーの期待に合致するように振る舞ったり応答するとは限りません。…
「テキストから音声を生成する方法:AIモデルBarkを使用する」
紹介 Barkは、Suno.aiが作成したオープンソースの完全生成的なテキストから音声へのモデルであり、背景音、音楽、単純な効果音を含む非常にリアルな多言語音声を生成することができます。GPTスタイルのアーキテクチャに従い、与えられたスクリプトから予期せぬ方法で逸脱することができます。通常のテキスト読み上げ(TTS)エンジンは、ロボットのようで機械生成の単調な音声を生成します。Barkは、GPTスタイルのモデルを使用して非常にリアルで自然な声を生成し、実際の人間のように素晴らしい体験を提供します。 学習目標 Barkモデルの基本的な使用法と機能、制限、アプリケーションについて学ぶ。 Pythonコードを使用してテキストからオーディオファイルを生成する方法を学ぶ。 NLTKとBarkライブラリを使用して大量の音声を生成する。 この記事は、データサイエンスブログマラソンの一環として掲載されました。 Barkのインストール Barkの機能とアプリケーションを理解するために、Google Colabノートブックを使用しましょう。 Barkをインストールするには、コマンドpip install git+https://github.com/suno-ai/bark.gitを使用します。 pip install git+https://github.com/suno-ai/bark.git 注意:Suno.aiによって管理されていない異なるパッケージがインストールされる可能性のある’bark’を使用しないでください。 Barkを使用してオーディオを生成する Barkは、英語、中国語、フランス語、ヒンディー語、ドイツ語などさまざまな言語をサポートしています。また、サポートされている言語のための複数の音声プロンプトを含むBarkスピーカーライブラリもサポートしています。こちらのスピーカーライブラリのリストをご確認ください。こちら。 Barkには、バックグラウンドノイズ、オーディトリウム、開始時の静寂などの事前定義されたタグ/ノートがあり、スピーカーの使用方法を理解するのに役立ちます。ユーザーの要件に基づいてこれらのタグを使用してPythonコードで適切なプロンプトを設定することができます。 以下のPythonコードは、選択したスピーカーに基づいてオーディオファイルを生成します。 from bark import…
イメージの意味的なセグメンテーションには、密な予測トランスフォーマーを使用します
イントロダクション この記事では、イメージセマンティックセグメンテーションというコンピュータビジョンの技術について説明します。これは複雑な技術のように聞こえますが、ステップバイステップで解説し、Hugging Faceのコレクションから密な予測トランスフォーマー(DPT)を使用したイメージセマンティックセグメンテーションの実装について紹介します。DPTを使用することで、通常とは異なる能力を持つ新しいフェーズのコンピュータビジョンが導入されます。コンピュータビジョンにおけるDPTと従来の遠くのつながりの理解との比較 学習目標 DPTと従来の遠くのつながりの理解の比較 PythonでDPTを使用したセマンティックセグメンテーションの実装 DPTの設計を探索し、その特徴を理解する この記事はデータサイエンスブログマラソンの一環として公開されました。 イメージセマンティックセグメンテーションとは何ですか? イメージセマンティックセグメンテーションとは、画像を持っており、それぞれのピクセルをそれが表す内容に応じてラベル付けしたいというアイデアです。これはコンピュータビジョンで使用され、車と木を区別したり、画像の一部を分離したりするために使用されます。つまり、ピクセルにスマートにラベルを付けることに関わります。しかし、本当の挑戦は、コンテキストとオブジェクト間の関係を理解することにあります。これを従来の画像処理の手法と比較してみましょう。 畳み込みニューラルネットワーク(CNN) 最初のブレイクスルーは、画像を処理するために畳み込みニューラルネットワーク(CNN)を使用することでした。しかし、CNNには限界があり、特に画像の遠くのつながりを捉えることに苦労します。画像内の異なる要素が長い距離でどのように相互作用するのかを理解しようとする場合を想像してみてください。それが従来のCNNの苦手なところです。そこで、DPTを導入します。これらのモデルは、強力なトランスフォーマーアーキテクチャに基づいており、関連性を捉える能力を持っています。次にDPTについて見てみましょう。 デンス予測トランスフォーマー(DPT)とは何ですか? この概念を理解するために、以前のNLPのタスクで使用していたトランスフォーマーの力を画像解析と組み合わせることを考えてみてください。それがデンス予測トランスフォーマー(DPT)のコンセプトです。それはまるで画像のスーパーディテクティブのようです。彼らは画像のピクセルにラベルを付けるだけでなく、各ピクセルの深さを予測する能力を持っています。これにより、各オブジェクトが画像からどれだけ遠くにあるかの情報が提供されます。以下で詳しく見ていきましょう。 DPTアーキテクチャのツールボックス DPTには異なるタイプがあり、それぞれに「エンコーダ」レイヤーと「デコーダ」レイヤーがあります。ここでは、2つの人気のあるタイプについて見てみましょう: DPT-Swin-Transformer:エンコーダレイヤーが10つ、デコーダレイヤーが5つある、メガトランスフォーマーのようなものです。画像内の要素間の関係を理解するのに優れています。 DPT-ResNet:18つのエンコーダレイヤーと5つのデコーダレイヤーを持つ、賢明なディテクティブのようなものです。遠くのオブジェクト間の関連性を見つけることに秀でていますが、画像の空間的な構造を保持します。 主な特徴 DPTがどのように機能するか、いくつかの主な特徴を見てみましょう: 階層的特徴抽出:従来の畳み込みニューラルネットワーク(CNN)と同様に、DPTは入力画像から特徴を抽出します。ただし、画像は異なる詳細レベルに分割される階層的なアプローチを取っています。この階層的なアプローチにより、ローカルとグローバルなコンテキストの両方を捉えることができ、モデルがさまざまなスケールでオブジェクト間の関係を理解することができます。 セルフアテンションメカニズム:これはDPTのバックボーンであり、元々のトランスフォーマーアーキテクチャから着想を得ています。画像内の長い距離の依存関係を捉え、ピクセル間の複雑な関係を学ぶことができるようにします。各ピクセルは他のすべてのピクセルからの情報を考慮し、モデルに画像の包括的な理解を与えます。 DPTを使用した画像セマンティックセグメンテーションのPythonデモ 以下にDPTの実装例を見ていきます。まずは、Colabに事前にインストールされていないライブラリのセットアップを行います。このコードはこちらまたはhttps://github.com/inuwamobarak/semantic-segmentationで見つけることができます。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.