Learn more about Search Results サイバー攻撃 - Page 3
- You may be interested
- 「エンコーディングからエンベディングへ」
- 「責任あるAI:AI利用の暗い側面を回避す...
- 「Med-PaLM Multimodal(Med-PaLM M)をご...
- マイクロソフトとMITの研究者たちによる新...
- 「中国のロボットウェイターが韓国の労働...
- ロボット工学の新たなる夜明け:タッチベ...
- 「アニマ・アナンドクマールとともにAIを...
- プリンストン大学とメタAIの研究者たちは...
- NVIDIA CEO:クリエイターは生成的AIによ...
- ディフューザーの新着情報は何ですか?🎨
- 「2023年にサプライチェーンアナリストに...
- Gitタグ:それらは何であり、どのように使...
- 13分でハミルトンを使用したメンテナブル...
- 「Matplotlib チュートリアル:あなたの国...
- 「Juliaプログラミング言語の探索:アプリ...
ジェンAIの活用:攻撃型AIに対するサイバー強靭性の構築
「創発型人工知能(GenAI)は、セキュリティの風景を革新し、新しい機会と新しい課題を創り出しています」
「AIベースのサイバーセキュリティがビジネスの強靭性を高める方法」
世界の50億人以上のインターネットユーザーとおよそ540億個のデバイスが、IDCによると1秒あたり3.4ペタバイトのデータを生成しています。デジタル化が加速する中、企業のITチームは、ビジネスの運用やサービスが中断されないように、入ってくるサイバー脅威を特定してブロックするための頼りになる手段として、AIベースのサイバーセキュリティを利用しています。 サイバー脅威から免れる業界はごく一部です。今年だけでも、国際ホテルチェーン、金融機関、フォーチュン100社の小売業、航空管制システム、アメリカ政府などが脅威と侵入を報告しています。 内部のミス、サイバー犯罪者、ハクティビスト、その他の脅威からのリスクにより、サイバーランドスケープでの損害は企業の評判や収益に影響を与えることがあります。セキュリティ侵害は業務を麻痺させ、特許や顧客データを危険にさらし、規制違反に対する罰金を申し受けることになったり、顧客の信頼を損ねる結果になることもあります。 AIと高速計算を活用することで、ビジネスはサイバー脅威を検出しブロックするために必要な時間と運用費用を削減できるだけでなく、リソースをコアビジネスの価値創造活動や収益を生み出す活動に集中させることができます。 以下では、様々な業界がどのようにAI技術を活用してデータを保護し、より早い脅威の検出を可能にし、攻撃を緩和して顧客やパートナーへのサービスの一貫した提供を保証しているかをご紹介します。 公共部門:身体の安全、エネルギーの安全、市民サービスの保護 AI搭載の分析ツールと自動化ツールは、政府機関が市民に情報やサービスに即時アクセスさせ、データに基づいた意思決定を行い、気候変動をモデル化し、自然災害を管理するなどの支援をしていますが、デジタルツールとインフラストラクチャーを管理する公的機関は、規制の遵守要件、公的監査、大規模で相互に接続されたネットワーク、機密データや重要な標的の保護の必要性を含む、複雑なサイバーリスクの環境に直面しています。 敵対する国家は、ネットワークの中断、知的財産の窃取、機密政府文書の盗難などのためにサイバー攻撃を開始する可能性があります。内部のミスや複雑な外部スパイ活動により、公共機関はデータ侵害の高いリスクにさらされます。スパイ活動者は内部の協力を受けることもあり、16%の公共行政の侵害事件では、共謀の証拠が見られます。重要なインフラ、市民データ、公的記録などの機密情報を保護するために、連邦機関はAIに頼っています。 アメリカエネルギー省(DOE)のサイバーセキュリティ、エネルギーセキュリティ、緊急対応(CESER)事務局は、新興の脅威に対応し、エネルギーインフラのセキュリティを向上させることにより、国のエネルギーセクターの耐性を強化することを目的としています。DOE-CESERは2010年以来、サイバーセキュリティの研究、開発、デモンストレーションプロジェクトに2億4,000万ドル以上を投資しています。 その一環として、同省はエネルギー供給システムのセキュリティの脆弱性とパッチ管理をAIで自動化し最適化するツールを開発しました。また、エネルギー供給システムの状況認識を向上させるためにソフトウェア定義ネットワークを利用した人工多様性とディフェンスセキュリティのための別のプロジェクトも行っており、エネルギーの連続的な流れを確保しています。 国家安全保障のための画期的な技術の研究と投資を担当している国防高等研究プロジェクト局(DARPA)は、機械学習とAIを複数の領域で使用しています。DARPAのCASTLEプログラムは、AIを訓練して高度で持続的なサイバー脅威から防御することを目的としています。この取り組みの一環として、研究者たちは自動化、繰り返し可能性、測定可能性を持つアプローチでサイバーセキュリティの評価を迅速化することを意図しています。また、サプライズ攻撃や敵対的攻撃に耐性のあるAIモデルの開発を支援するためのプラットフォーム、ライブラリ、データセット、トレーニング資料を提供するためのDARPA GARDプログラムもあります。 脅威の変化に対応し、身体の安全、エネルギーの安全、データの安全性を確保するために、公共機関はAIを統合し、ダイナミックで予防的かつ広範なサイバーディフェンスの姿勢を維持する必要があります。 金融サービス:デジタルトランザクション、支払い、ポートフォリオのセキュリティ確保 銀行、資産運用会社、保険会社などの金融機関は、AIと機械学習を活用して、不正検知、ポートフォリオ管理、アルゴリズム取引、セルフサービスバンキングなどで優れたパフォーマンスを提供しています。 デジタルトランザクション、支払い、融資、投資取引などが絶え間なく行われる金融サービス機関は、最も大規模で、複雑で、機密性の高いデータセットを取り扱っています。医療業界に次ぐデータ漏洩のコストは第二位であり、一件あたりのコストは約600万ドルです。規制当局からの罰金が発生した場合や、回復に法的費用や訴訟解決費用がかかるとコストは上昇します。さらに悪いことに、信頼が修復されなければ、失われたビジネスを回復することはありません。 銀行や金融機関は、AIを使用して内部の脅威を検知し、フィッシングやランサムウェアを検出し、機密情報を安全に保つための対策を講じています。 MastercardとEnel Xによる共同事業であるFinSec Innovation Labは、顧客がランサムウェアに対抗するためにAIを活用しています。FinSecとの協力前に、1つのカード処理顧客は1時間半で200社のサーバーがLockBitランサムウェアの攻撃を受けました。会社はサーバーをシャットダウンし、業務を一時停止しなければならず、推定で700万ドルのビジネスの損失が生じました。 FinSecは、この攻撃を研究所で再現し、NVIDIA Morpheusサイバーセキュリティフレームワーク、NVIDIA DOCAソフトウェアフレームワーク、およびNVIDIA…
サイバー犯罪の推進者’ (Saibā hanzai no suishinsha)
イニシャルアクセスブローカーは、無許可のアクセスを販売します (Inisharu akusesu burōkā wa, mukyoka no akusesu o hanbai shimasu.)
学校はサイバー保護のために政府に頼るべきですか?
連邦政府は、K-12の学校とその生徒をサイバー攻撃から守ることができるのでしょうか?
AI Time Journalは、「サイバーセキュリティのトレンド2023」eBookを発表し、進化する脅威の景観を明らかにします
10月12日、アメリカのサンフランシスコ—人工知能(AI)の最前線に位置する主要な出版物であるAI Time Journalは、最新の電子書籍「サイバーセキュリティトレンド2023」の発売を喜んで発表しますこの包括的なリソースは、サイバーセキュリティに関連するさまざまなトピックを探求し、専門家、愛好家、意思決定者に貴重な洞察と分析を提供しています... AI Time Journal、進化する脅威の風景における鍵となる示唆を開示する「サイバーセキュリティトレンド2023」の電子書籍をリリース 詳細を読む »
データ汚染とモデル崩壊:迫りくるAIの災害
AI生成コンテンツの存在は、疫病のように広がり、検索結果を毒し、さらにAIモデルを崩壊させるでしょう
「心理学を活用してサイバーセキュリティを強化する」
攻撃者の心に入り込んで企業を守る
情報セキュリティ:IoT業界内のAIセキュリティ
この記事では、AIセキュリティについての読者をIoT業界に没入させ、トピックの基盤となるさまざまな種類の「セキュリティ」についての理解を深めることを目指しています
「AIとブロックチェーンの交差点を探る:機会と課題」
今日私たちが見ている世界を変えるAIをブロックチェーンに統合することに関連する機会と課題を探索してください
「データサイエンス vs ソフトウェアエンジニア どちらがより良いキャリアですか?」
はじめに 現代のテック駆動の世界では、データサイエンスとソフトウェアエンジニアリングという2つの職業が大きな進展を遂げています。両者は重要な技術的役割を果たしているものの、異なる焦点、目標、スキルセットを持っています。この記事では、データサイエンスとソフトウェアエンジニアリングの違い、類似点、課題、将来のトレンドについて詳しく掘り下げます。 データサイエンスとは何ですか? データサイエンスは、データから価値ある知見を抽出する学際的な分野です。統計学、数学、コンピュータサイエンス、ドメイン知識の要素を組み合わせて、大規模なデータセットを分析し解釈するために活用されます。データサイエンティストは、予測モデルの構築、データに基づくソリューションの作成、意思決定支援のための具体的な提案を行います。 関連記事:データサイエンスは良いキャリアですか? ソフトウェアエンジニアリングとは何ですか? 一方、ソフトウェアエンジニアリングは、ソフトウェアシステムの設計、開発、保守に関わるものです。ソフトウェアエンジニアは、信頼性の高い、効率的でスケーラブルなソフトウェアアプリケーションを作成することを主な目標とします。彼らはコードを書き、ソフトウェアのデバッグを行い、ユーザーの要件や業界基準を満たす最終成果物を確保します。 データサイエンスとソフトウェアエンジニアリングの主な違い 焦点と目標 データサイエンス 複雑な問題の解決:データサイエンティストは、データ分析技術、機械学習、統計モデリングを用いて、複雑で大規模な問題を解決します。 意思決定の改善:彼らはデータに基づいた洞察と提案を提供することで、組織内の意思決定プロセスの向上に取り組みます。 データに基づく戦略の作成:データサイエンティストは、データに基づいた戦略と計画の策定に協力し、組織が情報に基づいた選択をし、機会をつかむことを可能にします。 ソフトウェアエンジニアリング ソフトウェアの設計:ソフトウェアエンジニアは、ソフトウェアアプリケーションの設計図を作成し、その機能と外観を決定します。 機能的な製品の開発:彼らはコードの記述と、特定の要件を満たし、効率的に動作するソフトウェア製品の構築に焦点を当てます。 堅牢性の維持:ソフトウェアエンジニアは、ソフトウェアが堅牢で信頼性があり、時間の経過に伴うニーズの変化に適応することを確認します。 必要なスキル スキル データサイエンス ソフトウェアエンジニア 技術的スキル PythonやRなどのプログラミング言語、データ操作、機械学習、統計分析の習熟度。 Java、C++、JavaScriptなどのプログラミング言語、ソフトウェア開発の方法論、デバッグ技術の習熟度。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.