Learn more about Search Results コンポーネント - Page 3

「AI戦略にデータ管理を実装する方法」

データはAI戦略の核ですデータの品質、データの統合、データのガバナンスは、データを最も効果的に扱うための3つの主要な要素です

リトリーバル・オーグメンテッド・ジェネレーションを使用して、安定した拡散プロンプトを改善しましょう

テキストから画像を生成することは、メディアやエンターテイメント、ゲーム、ECサイトの商品ビジュアライゼーション、広告やマーケティング、建築設計やビジュアライゼーション、芸術創作、医療画像など、さまざまな分野で応用される急速に成長している人工知能の分野ですStable Diffusionは、数秒で高品質な画像を作成する力を与えるテキストから画像へのモデルです11月には[…]

「デジタル時代のユーザーセントリックデザイン:ウェブデザインとUI/UX体験に影響を与えるトレンド」

ユーザー体験に重点を置くウェブデザインの最新トレンドを紹介しましょうダークモードの普及から3D要素の統合まで、魅力的な要素を解説します

SalesForce AI 研究 BannerGen マルチモダリティ バナー生成のためのオープンソース ライブラリ

効果的なグラフィックデザインは成功したマーケティングキャンペーンの基盤です。それはデザイナーと視聴者の間のコミュニケーション橋渡しを行い、ユーザーを魅了し、重要な詳細を強調し、キャンペーンの視覚的な外観を向上させます。しかし、現在の方法は時間のかかるものであり、層ごとの組み立て作業が必要です。これには専門知識が必要であり、スケーラブルにはなりません。 上記の問題を解決するために、Salesforceの研究者は、生成型AIの力を活用してデザインプロセスを効率化するオープンソースのライブラリBannerGenを導入しました。このライブラリには、3つの並列マルチモーダルバナージェネレーションメソッド、LayoutDETR、LayoutInstructPix2Pix、およびFramed Template RetrieveAdapterが含まれます。それぞれが大量のデザイングラフィックデータでトレーニングを受けており、デザインプロセスを迅速化できます。さらに、これらすべてがBannerGenのGitHubリポジトリでオープンソース化されており、Pythonモジュールとしてインポートできるため、開発者は各メソッドで実験することが容易です。BannerGenには、ライセンスされたフォントと注意深く作成されたテンプレートもあり、開発者は高品質のデザインを構築することができます。 ユーザーはバナーを作成したい画像をアップロードすることができます。その画像は、主要な要素に焦点を当てて複数のサブイメージにクロッピングされます。ユーザーはまた、希望するバナーのタイプと含めたいテキストを指定することもできます。サブイメージは選択したテンプレートに統合され、見事なビジュアルが作成されます。最終的なデザインはHTMLファイルとPNGファイルとして生成されます。 研究者はVAEGANフレームワークを取り入れて、生成されたデザインを現実のパターンに合わせるようにしました。DETRアーキテクチャもBannerGenに組み込まれ、LayoutDETRとして言及されています。研究者はDETRデコーダを変更して、マルチモーダルの前景入力を処理できるようにしました。このアーキテクチャにより、BannerGenは背景と前景要素をより良く理解することができ、より良い結果を生み出します。 BannerGenは、拡散モデルによって強化された画像から画像への編集技術であるInstructPix2Pixも組み込んでいます。それは背景画像をテキストが重ねられた画像に変換するように微調整されています。 3番目のメソッドであるFramed Template RetrieveAdapterは、生成されたデザインの多様性を向上させるために使用され、3つのコンポーネントで構成されています。メトリクスに基づいて最適なフレームを見つけるリトリーバー、フレームに適合するように入力画像とテキストをカスタマイズするアダプター、背景レイヤーとユーザーの入力を統合してHTML/CSSでデザインを生成するレンダラーです。 まとめると、BannerGenは生成型AIを活用してユーザーがシームレスにカスタマイズされたバナーを作成できる強力で多機能なフレームワークです。BannerGenのアーキテクチャは実際のレイアウトから学ぶように設計されており、背景と前景要素を理解することができます。最終的なデザインはHTMLファイルとPNGファイルとして生成され、手動で簡単に調整することができ、すぐに使用できるように任意のメディアに埋め込むことができます。BannerGenはグラフィックデザインのプロセスを時間のかかるものから解放し、ユーザーが高品質でプロフェッショナルなデザインを生成するのを支援します。 この記事はSalesForce AI Research BannerGen: An Open-Source Library for Multi-Modality Banner GenerationがMarkTechPostに最初に掲載されました。

すべての開発者が知るべき6つの生成AIフレームワークとツール

この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください

「拡散を通じた適応学習:先進のパラダイム」

イントロダクション 教育と機械学習のダイナミックな風景において、適応学習を通じた拡散はパラダイムシフトを示しています。この高度なアプローチは、拡散の原則を利用して学習体験をカスタマイズし、個々の学習者のニーズとペースにシームレスに適応させます。この記事では、適応学習を通じた拡散の微妙な点、教育領域を横断するその応用、学習者や教育者にとって持つ変革的な影響について深く掘り下げていきます。 学習目標 教育と機械学習の文脈における適応学習を通じた拡散の主要な原則を理解する。 学習者モデル、チュータリングモデル、知識ドメインなど、適応学習アーキテクチャの主要なコンポーネントを探究する。 エドテック、企業研修、医療教育など、様々な領域での適応学習を通じた拡散の現実世界での応用について洞察を得る。 動的コンテンツの拡散、個別化された学習経路、リアルタイムフィードバックの拡散のための高度なコードスニペットの実装に関する知識を習得する。 学習者と教育者に対する適応学習を通じた拡散の変革的な影響、学習者の力を高め、教育者の効率を向上させる役割を認識する。 この記事はデータサイエンスブロガソンの一環として公開されました。 拡散を通じた適応学習の理解 拡散を通じた適応学習の核心は、教育モデルへの拡散プロセスの考えられた適用です。物理学と数学の根本的な概念である拡散は、粒子や情報のヴォーエージアイ(VoAGI)を通じた広がりを表します。教育の領域では、これは知識の知識の賢明な伝達と吸収を意味し、個々の学習者の独自の学習軌跡に合わせて調整します。 適応学習のアーキテクチャ 学習者モデル 適応学習アーキテクチャの核心は学習者モデルです。この動的なエンティティは、学習者の熟練度レベル、既存の知識、割り当てられた学習目標、好ましい学習スタイルなど、学習者の独自の属性を捉えます。学習者モデルは、各インタラクションごとに進化し適応して、最適な学習体験を提供するパーソナライズされた設計図として機能します。 既存の知識、割り当てられた目標、学習スタイル 既存の知識:この学習者モデルの側面は、学習者が既に知っていることを網羅します。前の知識を評価することで、システムは冗長性を回避し、既存のギャップを埋めるためにコンテンツを調整します。 割り当てられた目標:学習者に割り当てられた学習目標はもう一つの重要な側面です。これらの目標は基準となり、適応システムをガイドし、学習者固有の教育目標に合わせたコンテンツを編集します。 学習スタイル:学習者が情報を最も効果的に吸収する方法を理解することは重要です。学習スタイルは、視覚的、聴覚的、運動感覚など、個々の学習好みを含みます。適応学習アーキテクチャは、この情報を活用して、個別の学習スタイルに最適化された方法でコンテンツを提供します。 チュータリングモデル チュータリングモデルは、教育コンテンツの適応を担うインテリジェントなコアです。チュータリングモデルは、学習者モデルから得られた洞察を活用し、教育コンテンツの難易度、ペース、形式を動的に調整します。このモデルは高度なアルゴリズムを使用して、学習者の現在の熟練度と学習スタイルに適合する学習教材を提供し、より効果的な学習体験を促進します。 知識ドメイン 知識ドメインは、学習可能な科目全体を包括します。これはチュータリングモデルがコンテンツを抽出するための広範なリポジトリとなります。適応学習アーキテクチャは、知識ドメインから選択されたコンテンツが学習者の目標に合致するよう最適化し、教育の旅を改善します。 学習者への出力 適応学習アーキテクチャの最終的な出力は、個別の学習者に合わせたカスタマイズされた学習体験です。この出力には、学習者の理解と記憶力を最大化するためのカスタマイズされたレッスン、評価、フィードバックが含まれます。適応システムはリアルタイムの対話と学習者の変化するニーズに基づいて、この出力を継続的に改善します。…

このAI論文は、イメージとテキストのアラインメントモデルにおける詳細なテキストとビジュアルの説明のための高度な技術を紹介しています

“`html 画像テキストの整列モデルは、視覚的コンテンツとテキスト情報の意味のある関連を確立し、イメージキャプショニング、リトリーバル、理解などのアプリケーションを可能にすることを目指しています。情報を伝える際にテキストと画像を組み合わせることは強力なツールになることがありますが、それらを正しく整列させることは難しい場合があります。整列の誤りは混乱や誤解を招く可能性があり、それらを検出することが重要です。テルアビブ大学、グーグルリサーチ、ヘブライ大学の研究者は、テキストの説明とそれに対応する画像の不一致を見るための新しいアプローチを開発しました。 T2I(テキストから画像へ)ジェネレーティブモデルは、GANベースからビジュアルトランスフォーマーや拡散モデルに移行することで、複雑なT2I対応を正確に捉えるという課題に直面しています。GPTのようなビジョン言語モデルはさまざまなドメインを変革しましたが、主にテキストに重点を置いており、ビジョン言語タスクにおいては効果が制限されています。ビジュアルコンポーネントと言語モデルを組み合わせた進歩は、テキストの説明を通じてビジュアルコンテンツの理解を向上させることを目指しています。従来のT2I自動評価は、FIDやインセプションスコアなどの指標に依存しており、より詳細な不一致のフィードバックが必要です。最近の研究では、画像テキストの説明可能な評価を導入し、質問応答ペアを生成し、ビジュアル質問応答(VQA)を使用して特定の不一致を分析しています。 この研究では、既存のテキスト画像ジェネレーティブモデルの不一致を予測・説明する方法を紹介しています。連動評価モデルを訓練するためにトレーニングセット、テキストとビジュアルフィードバックを構築しています。提案された手法は、質問-応答パイプラインに依存せずに画像テキストの不一致の説明を直接生成することを目指しています。 研究者は、言語とビジュアルモデルを使用して、不一致したキャプション、対応する説明、および視覚的な指標のトレーニングセットを作成しました。彼らはこのセットでビジョン言語モデルを微調整し、画像テキストの整列を改善しました。彼らはまた、略奪研究を行い、テキストから質問応答ペアを生成するためにVQAを使用する最近の研究を参照して、特定の不一致に関する洞察を提供しました。 提案手法のトレーニングセットでトレーニングされた微調整されたビジョン言語モデルは、2つの不一致の分類と説明生成タスクにおいて優れたパフォーマンスを発揮します。これらのモデルは画像テキストのペアで不一致を明確に示し、詳細なテキストと視覚的な説明を提供します。PaLIモデルは、バイナリアラインメント分類で非PaLIモデルを凌駕しますが、小さいPaLIモデルは分布内テストセットで優れた性能を発揮しますが、分布外の例では遅れます。この手法は、テキストフィードバックタスクで大幅な改善を示しており、今後の作業でマルチタスキングの効率を向上させる予定です。 まとめると、この研究の主なポイントは次の通りです: ConGen-Feedbackは、相反するキャプションと不一致のテキストおよび視覚的な説明を生成できるフィードバック中心のデータ生成方法です。 この手法は、大規模な言語モデルとグラフィカルグラウンディングモデルを利用して包括的なトレーニングセットTVフィードバックを構築し、バイナリアラインメントの分類と説明生成タスクでベースラインを上回るパフォーマンスを引き出すモデルをトレーニングするために使用されます。 提案された手法は、質問-回答パイプラインや評価タスクの分解に頼らずに、画像テキストの不一致の説明を直接生成することができます。 SeeTRUE-Feedbackによって開発された人間の注釈付き評価は、ConGen-Feedbackを使用して訓練されたモデルの正確性とパフォーマンスをさらに向上させます。 全体的に、ConGen-Feedbackは、フィードバック中心のデータと説明を生成するための効果的で効率的なメカニズムを提供することにより、NLPおよびコンピュータビジョンの分野を革新するポテンシャルを持っています。 “`

『LLM360をご紹介します:最初の完全オープンソースで透明な大規模言語モデル(LLM)』

“`html オープンソースの大規模言語モデル(LLM)であるLLaMA、Falcon、Mistralなどは、AIのプロフェッショナルや学者向けにさまざまな選択肢を提供しています。しかし、これらのLLMの大部分は、エンドモデルの重みや推論スクリプトなどの一部のコンポーネントだけが利用可能であり、技術的なドキュメントでは、一般的な設計の側面や基本的なメトリックに焦点を絞った内容が多いです。このアプローチでは、LLMのトレーニング手法の明確性が低下し、チームがトレーニング手順のさまざまな側面を継続的に解明するための努力が重複してしまいます。 Petuum、MBZUAI、USC、CMU、UIUC、UCSDの研究者チームが、LLM360を導入しました。これは、エンドツーエンドのLLMトレーニングプロセスを透明で再現可能にすることにより、オープンかつ協力的なAIの研究をサポートするイニシアチブです。LLM360は、トレーニングコードとデータ、モデルのチェックポイント、中間結果などのすべてをコミュニティに提供することを主張する、完全なオープンソースのLLMです。 LLM360に最も近いプロジェクトはPythiaであり、LLMの完全な再現性を目指しています。GPT-JやGPT-NeoXなどのEleutherAIモデルは、トレーニングコード、データセット、中間モデルのチェックポイントと共にリリースされており、オープンソースのトレーニングコードの価値を示しています。INCITE、MPT、OpenLLaMAは、トレーニングコードとトレーニングデータセットがリリースされ、RedPajamaも中間モデルのチェックポイントを公開しています。 LLM360は、AMBERとCRYSTALCODERの2つの7BパラメータLLMをリリースし、そのトレーニングコード、データ、中間チェックポイント、分析も提供します。事前トレーニングデータセットの詳細、データの前処理、フォーマット、データミキシングの比率、LLMモデルのアーキテクチャの詳細については、研究で詳しく説明されています。 この研究では、以前の研究で導入された記憶スコアの使用と、メトリック、データチャンク、チェックポイントの公開により、研究者が対応関係を容易に見つけることができるようになることを示しています。研究ではまた、LLMが事前にトレーニングされたデータを削除することの重要性や、データのフィルタリング、処理、トレーニング順序の詳細についても強調しています。 研究では、ARC、HellaSwag、MMLU、TruthfulQAの4つのデータセットについてのベンチマーク結果が示され、モデルの事前トレーニング中のパフォーマンスが示されています。HellaSwagとARCの評価スコアはトレーニング中に単調に増加し、TruthfulQAのスコアは減少します。MMLUのスコアは最初に減少し、その後成長します。AMBERのパフォーマンスはMMLUなどのスコアで競争力があるものの、ARCでは遅れています。ファインチューニングされたAMBERモデルは、他の類似モデルと比較して強力なパフォーマンスを示します。 LLM360は、オープンソースLLMの完全かつ包括的なイニシアチブであり、オープンソースのLLM事前トレーニングコミュニティ内での透明性を推進するものです。この研究では、AMBERとCRYSTALCODERの2つの7B LLMをトレーニングコード、データ、中間モデルのチェックポイント、分析と共にリリースしています。研究では、チェックポイント、データチャンク、評価結果を公開することにより、包括的な分析と再現性を可能にするため、すべての角度からLLMをオープンソース化することの重要性を強調しています。 “`

「Amazon SageMaker Pipelines、GitHub、およびGitHub Actionsを使用して、エンドツーエンドのMLOpsパイプラインを構築する」

機械学習(ML)モデルは孤立して動作するものではありません価値を提供するためには、既存の製造システムやインフラに統合する必要がありますそのため、設計と開発の過程でMLライフサイクル全体を考慮する必要がありますMLオペレーション(MLOps)は、MLモデルの生涯にわたって効率化、自動化、およびモニタリングを重視しています堅牢なMLOpsパイプラインを構築するには、異なる部門間の協力が求められます[…]

Amazon BedrockとAmazon Transcribeを使用して、生成AIを使用して録音のサマリーを作成します

「会議のメモは共同作業の重要な一部ですが、しばしば見落とされてしまいます討論を主導し、注意深く聞きながらメモを取ることは、重要な情報が記録されずに逃げてしまうことが簡単ですメモが取られていても、整理されていないか、読みづらいことがあり、無意味になってしまうこともありますこの記事では、Amazonを使った効果的なメモの使い方について探っています」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us