Learn more about Search Results による - Page 3

パイソンによる機械学習エンジニアのためのデザインパターン:プロトタイプ

これはデザインパターンについて書いた初めてのブログの投稿ではありません最近の投稿で、デザインパターンの使用は一般的ではないため、このトピックに対して肯定的なフィードバックを受け取りました...

Google DeepMindによる新たなブレイクスルー、新しい素材が公開されました

新しい研究論文によれば、GoogleのDeepMindが何十万もの新たな物質デザインの仮説を発見しました彼らはこのブレークスルーによってコンピュータチップ、バッテリー、太陽電池などの材料の生産を改善することを望んでいます自然に掲載されたこの新しい材料の発見と合成は...

「データ統合とAIによる洞察力」

業界全般において意思決定と自動化の向上のためのデータ統合とAIの変革的な相乗効果を探求する

Pythonコードの行数を100行未満で使用した動的プログラミングによる在庫最適化

在庫の最適化は、さまざまなドメインで生じる幅広い問題ですその中心的な問いは次のようなものです:あなたは自転車店のマネージャーだと思います毎日、あなたはお客様と連絡を取る必要があります...

「3Dシーン表現の境界を破る:新しいAIテクニックによる高速かつ効率的なレンダリングとストレージ要件の削減によるゲームの変革」

NeRFは、連続的な3Dボリュームとしてシーンを表します。離散的な3Dメッシュやポイントクラウドの代わりに、シーン内の任意の3Dポイントの色と密度の値を計算する関数を定義します。異なる視点からキャプチャされた複数のシーン画像でニューラルネットワークをトレーニングすることにより、NeRFは観測された画像と整合性のある正確な表現を生成する方法を学習します。 NeRFモデルがトレーニングされると、任意のカメラの視点からシーンの写真のような新しいビューを合成し、高品質のレンダリング画像を作成できます。NeRFは、従来の3D再構築方法では難しい複雑な照明効果、反射、透明性を含む高忠実度のシーンの詳細を捉えることを目指しています。 NeRFは、高品質な3D再構築とシーンの新しいビューのレンダリングにおいて有望な結果を示し、コンピュータグラフィックス、仮想現実、拡張現実などの分野で精度の高い3Dシーン表現が重要なアプリケーションに役立つものとなっています。ただし、大規模かつ詳細なシーンをキャプチャするために、NeRFは記憶容量や処理能力の要件による計算上の課題も抱えています。 3Dガウス描画では、高品質のレンダリング画像を維持するために多数の3Dガウスが必要とされ、これには多大なメモリとストレージが必要とされます。ガウス点の数を削減しながら性能を犠牲にせずにガウス属性を圧縮することは効率を高めます。成均館大学の研究者は、高いパフォーマンスを保持しながらガウスの数を大幅に削減する学習可能なマスク戦略を提案しています。 また、彼らは球面調和関数に頼らず、グリッドベースのニューラルフィールドを使用することで、ビュー依存の色のコンパクトで効果的な表現を提案しています。彼らの研究は、高いパフォーマンス、高速トレーニング、コンパクトさ、リアルタイムの描画を実現する3Dシーン表現の包括的なフレームワークを提供します。 彼らは実際のシーンや合成シーンを含むさまざまなデータセットでコンパクトな3Dガウス表現を幅広くテストしています。データセットに関係なく、実験全体で、3Dガウス描画と比較してストレージが10倍以上削減され、シーン表現の品質を維持しながら描画速度が向上することが一貫して確認されました。 ポイントベースの手法は3Dシーンの描画に広く使用されています。最も単純な形式はポイントクラウドです。しかし、ポイントクラウドは穴やエイリアシングなどの視覚的なアーティファクトを引き起こす可能性があります。研究者たちは、ポイントをラスタ化ベースのポイントスプラッティングと微分可能なラスタ化を介して処理することによってこれを軽減する点ベースのニューラルレンダリング手法を提案しました。 NeRFの未来は、3Dシーンの理解とレンダリングを革新する可能性を秘めており、現在の研究の取り組みがさらなる範囲を拡大し、効率的でリアルなさまざまなドメインでの応用を可能にすることが期待されています。

「APIガバナンスによるAIインフラストラクチャのコスト削減」

APIガバナンスは、リソースの割り当てを最適化し、利用状況をモニタリングし、セキュリティを強化することによって、組織がAIインフラのコストをコントロールするのに役立ちます

Pythonによる(Bio)イメージ分析:ヒストグラムについて知っておくべきすべてのこと

「(バイオ)イメージ解析とPythonを使いこなすシリーズへようこそ:すべてを知るために必要なことこのチュートリアルでは、ヒストグラムという重要なツールについて取り上げ、それがどれほど重要かを世界でいかに果たしているかを探求してください...」

このAI研究レビューでは、衛星画像とディープラーニングの統合による資産ベースの貧困の測定について探求しています

ルンド大学とハルムスタッド大学の研究者は、衛星画像と深層機械学習による貧困推定の説明可能なAIに関するレビューを実施しました。透明性、解釈性、およびドメイン知識を重視したこの32の論文の分析により、説明可能な機械学習のこれらの重要な要素はバラつきがあり、貧困と福祉の科学的な洞察と発見の要求を完全に満たすことができないことが明らかになっています。 この研究では、調査データをグラウンドトゥルースとして貧困/富を予測し、都市部および農村地域に適用し、深層ニューラルネットワークを含む32の論文を分析することで、これらのコア要素の状況のバラつきを明らかにしています。現在の状況は、貧困と福祉に関する洞察に対する科学的な要件を満たしていないと論じています。このレビューは、開発コミュニティ内での広範な普及と受け入れの重要性を強調しています。 導入部では、脆弱なコミュニティの特定と貧困の決定要因の理解における課題について言及し、情報のギャップと家計調査の制約を引用しています。深層機械学習と衛星画像がこれらの課題の克服に役立つ可能性を強調し、科学的なプロセスでの説明可能性、透明性、解釈性、およびドメイン知識の必要性を強調しています。調査データ、衛星画像、および深層ニューラルネットワークを使用した貧困/富の予測における説明可能な機械学習の状況を評価することで、広範な普及と開発コミュニティ内での受け入れを促進することが目的です。 総合的な文献レビューを行い、特定の基準を満たす32の研究を分析した結果、説明可能な機械学習のコア要素である透明性、解釈性、およびドメイン知識の状況は、科学的な要件を満たすことができず、バラつきがあります。解釈性と説明性は弱く、モデルを解釈したり予測データを説明したりするための努力が限られています。ドメイン知識は、選択のための特徴ベースのモデルではよく使用されますが、他の側面ではあまり使用されていません。実験結果は、富の指標の制約や低解像度衛星画像の影響などの洞察を示しています。一つの論文は、ドメイン知識の強い仮説と肯定的な評価によって際立っています。 貧困、機械学習、および衛星画像のドメインでは、説明可能な機械学習アプローチにおける透明性、解釈性、およびドメイン知識の状況は異なり、科学的な要件を満たしていません。開発コミュニティ内での広範な普及にとって重要な説明可能性は、単なる解釈性を超えています。レビューされた論文の透明性はバラバラであり、いくつかはよく文書化されており、他のいくつかは再現性に欠けています。解釈性と説明性の欠点は依然として存在し、モデルを解釈したり予測データを説明したりする研究者はほとんどいません。特徴ベースのモデルではドメイン知識が一般的に使用されますが、他のモデリングの側面では広くは適用されていません。影響の特徴のソートとランキングは重要な将来の研究方向です。

「Bingチャットは、最新のリアルタイムな知識を提供する点でChatGPTを上回るのか? 検索補完強化ジェネレーション(RAG)によるご紹介」

近年、大規模言語モデル(LLM)の開発により、人工知能(AI)と機械学習の分野において革新的な変化がもたらされました。これらのモデルは大衆やAIコミュニティから重要な注目を集め、自然言語処理、生成、理解において驚異的な進歩を遂げています。よく知られたChatGPTというLLMの最良の例は、OpenAIのGPTアーキテクチャに基づいており、人間がAIパワードの技術と対話する方法を変えました。 LLMは、テキスト生成、質問応答、テキスト要約、言語翻訳などのタスクにおいて優れた能力を示していますが、それでも独自の欠点があります。これらのモデルは、時に正確でない情報や時代遅れの情報として出力することがあります。さらに、適切なソースの引用がない場合、LLMによって生成された出力の信頼性を検証することが困難になることがあります。 Retrieval Augmented Generation(RAG)とは何ですか? Retrieval Augmented Generation(RAG)という手法は、上記の制限に対処しています。RAGは、外部知識ベースから事実を収集し、大規模言語モデルが正確かつ最新の情報にアクセスできるようにする人工知能ベースのフレームワークです。 外部知識の取り込みにより、RAGはLLMを変革することができました。RAGは従来のLLMの制限を解消し、外部検索と生成手法をスムーズに組み合わせることにより、より信頼性のある、文脈に敏感な、知識のあるAIによるコミュニケーション環境を保証します。 RAGの利点 応答の品質向上 – Retrieval Augmented Generationは、不一致のあるLLM生成の応答問題に焦点を当て、より正確で信頼性のあるデータを保証します。 最新の情報の取得 – RAGは外部情報を内部表現に統合することで、LLMが最新かつ信頼性のある事実にアクセスできるようにします。これにより、回答が最新の知識に基づいており、モデルの正確性と関連性が向上します。 透明性 – RAGの実装により、ユーザーはLLMベースのQ&Aシステムにおけるモデルのソースを取得できます。ユーザーに文の整合性を検証する機能を提供することで、LLMは透明性を促進し、提供するデータへの信頼性を高めます。 情報の欠落と幻覚の減少 – RAGは、LLMを独立かつ検証可能な事実に基づいて構築することにより、モデルが機密情報を漏洩したり、誤った結果を生成する可能性を低減します。より信頼性のある外部知識ベースに依存することで、LLMが情報を誤解する可能性を減らします。…

「SSCCコンプライアンスによるトレース能力基準への適合方法」

SSCCコンプライアンス規則を利用して、グローバルなトレーサビリティ基準を満たす方法について詳しく読み進めてください

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us