Learn more about Search Results [3] - Page 3

ID対マルチモーダル推奨システム:転移学習の視点

この記事は、移転可能な推薦システムの開発状況と代表的な作業(IDベース、モダリティベース、および大規模言語モデルベース)についてレビューしています

「Pythonを使って現実世界のデータにおけるべき乗則の検出」

ここでは、最大尤度法を使用して実証データからパワーローを検出する方法を説明しますPythonのサンプルコードも含まれています

MusicGenを再構築:MetaのAI音楽における地下進化

2023年2月、Googleは彼らの生成音楽AI MusicLMで波風を立てましたその時点で、二つのことが明確になりました 多くの人が次の画期的なモデルが…の10倍の大きさになるだろうと予想していました

ステアラブルニューラルネットワーク(パート1)への優しい紹介

「幾何学的深層学習は、Deep Learningの一分野として、グラフとして表現された3Dまたは2Dジオメトリオブジェクトを処理するために、畳み込みニューラルネットワークなどの従来のAIフレームワークを拡張することを目指しています...」

私の人生の統計:1年間習慣を追跡し、これが私が学んだことです

これはおそらく私が人生で行った中で最も長くて時間のかかる実験だと思いますその上、科学的な意義はほとんどありません - 人口サンプルはただ1人だけです - そして非常に...

大規模展開向けのモデル量子化に深く掘り下げる

イントロダクション AIにおいて、大規模なモデルをクラウド環境に展開するという2つの異なる課題が浮かび上がっています。これにより、スケーラビリティと収益性を阻害するかなりの計算コストが発生し、複雑なモデルをサポートするのに苦労するリソース制約のあるエッジデバイスの問題も生じます。これらの課題の共通点は、精度を損なうことなくモデルのサイズを縮小する必要性です。一つの解決策となる人気のある手法であるモデルの量子化は、精度のトレードオフの懸念を引き起こします。 量子化意識トレーニングは、魅力的な答えとして浮上します。これは、モデルのトレーニングプロセスに量子化をシームレスに統合することで、重要な精度を保ちながら、モデルのサイズを大幅に削減することを可能にします。時には2倍から4倍以上にもなります。この記事では、量子化について詳しく解説し、ポストトレーニング量子化(PTQ)と量子化意識トレーニング(QAT)を比較します。さらに、Deciによって開発されたオープンソースのトレーニングライブラリ「SuperGradients」を使用して、両方の方法を効果的に実装する方法を実践的に示します。 また、モバイルや組み込みプラットフォームにおける畳み込みニューラルネットワーク(CNN)の最適化についても探求します。サイズと計算要件のユニークな課題に取り組み、モデルの最適化における数値表現の役割を検討します。 学習目標 AIにおけるモデルの量子化の概念を理解する。 一般的な量子化レベルとそのトレードオフについて学ぶ。 量子化意識トレーニング(QAT)とポストトレーニング量子化(PTQ)の違いを認識する。 メモリ効率やエネルギー削減など、モデルの量子化の利点を探求する。 モデルの量子化が広範なAIモデルの展開を可能にする方法を発見する。 この記事はData Science Blogathonの一部として掲載されました。 モデルの量子化の必要性の理解 モデルの量子化は、ディープラーニングにおける基本的な技術であり、モデルのサイズ、推論速度、およびメモリ効率に関連する重要な課題に対処することを目指しています。これは、モデルの重みを高精度の浮動小数点表現(通常は32ビット)から低精度の浮動小数点(FP)または整数(INT)フォーマット(16ビットまたは8ビットなど)に変換することによって実現されます。 量子化の利点は二つあります。まず第一に、モデルのメモリフットプリントを大幅に削減し、大きな精度の劣化を引き起こすことなく推論速度を向上させます。さらに、メモリ帯域幅の要件を減らし、キャッシュの利用効率を向上させることによって、モデルのパフォーマンスも最適化されます。 INT8表現は、ディープニューラルネットワークの文脈では「量子化された」と俗に言われることがありますが、ハードウェアアーキテクチャに応じてUINT8やINT16のような他のフォーマットも利用されます。異なるモデルは、精度とモデルサイズの削減のバランスを取るために、異なる量子化アプローチを必要とし、事前知識と緻密な微調整を要することがしばしば求められます。 量子化は、特にINT8などの低精度の整数フォーマットにおいて、動的レンジが制限されているため、課題をもたらします。FP32の広範な動的レンジをINT8の255個の値に押し込めることは、精度の低下を招く可能性があります。この課題を緩和するために、パーチャネルまたはパーレイヤのスケーリングにより、重みと活性化テンソルのスケールとゼロポイント値が、より適した量子化フォーマットに適合するように調整されます。 さらに、量子化意識トレーニングでは、モデルのトレーニング中に量子化プロセスをシミュレートすることで、モデルが優れた精度で低精度に適応することが可能になります。このプロセスの重要な側面であるスクイーズ(またはレンジの推定)は、キャリブレーションによって実現されます。 本質的には、モデルの量子化は効率的なAIモデルの展開に不可欠であり、特に計算リソースが限られているエッジデバイスでの資源効率と精度の微妙なバランスを取るために重要です。 モデルの量子化の技術 量子化レベル 量子化は、モデルの高精度浮動小数点の重みと活性化を、低精度の固定小数点値に変換します。 “量子化レベル”は、これらの固定小数点値を表すビット数を指します。一般的な量子化レベルは、8ビット、16ビット、およびバイナリ(1ビット)の量子化です。適切な量子化レベルを選択することは、モデルの精度とメモリ、ストレージ、および計算効率とのトレードオフに依存します。…

ビッグデータの力を解放する:グラフ学習の魅力的な世界

大企業は膨大な量のデータを生成し蓄積しています例えば、このデータの90%は最近の数年間に作成されたものですしかし、このうち73%のデータはまだ利用されていません[1]しかし、ご存知のように…

「Pythonによるロジスティック回帰のエラーのデバッグのベストプラクティス」

「ロジスティック回帰(LR)の基本についてはたくさんのことが書かれてきましたその多機能性や実績のあるパフォーマンス、基礎となる数学についてもしかし、LRを成功裏に実装し、デバッグする方法を知ることが重要です...」

パレート、パワーロー、そしてファットテール

統計はデータサイエンスと分析の基盤ですそれは複雑な問題に客観的に答えるための強力なツールボックスを提供してくれますしかし、私たちのお気に入りの統計ツールの多くは、...の時に無力となります

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us