Learn more about Search Results 2022年 - Page 39
- You may be interested
- 「10 Best AI医療書記」
- 「簡単な英語プロンプトでLLMをトレーニン...
- テキスト生成の新時代:RAG、LangChain、...
- ジオスペーシャルデータ分析のための5つの...
- 「どのオンラインデータサイエンスコース...
- 「SegGPT」にお会いください:コンテキス...
- 「月光スタジオのAIパワード受付アバター...
- 「ChatGPT時代の会話支援の未来はどうなる...
- 「Prompt Engineering Is Not a Thing」は...
- 「エッセンシャルAI、シリーズAラウンドで...
- 「25以上のChatGPTのプロンプトで、より多...
- MatplotlibとSeabornを使ったビジュアルの...
- アマゾンの研究者が提案するKD-Boost:リ...
- 「研究者がオンラインプライバシーについ...
- PythonのAsyncioをAiomultiprocessで強化...
グラフの復活:グラフの年ニュースレター2023年春
今日のナレッジグラフ、グラフデータベース、グラフアナリティクス、グラフAIの現在地と今後の方向性に関するニュースと分析を見つける
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
FastAPI、AWS Lambda、およびAWS CDKを使用して、大規模言語モデルのサーバーレスML推論エンドポイントを展開します
データサイエンティストにとって、機械学習(ML)モデルを概念実証から本番環境へ移行することは、しばしば大きな課題を提供します主な課題の一つは、良好なパフォーマンスを発揮するローカルトレーニング済みモデルをクラウドに展開して、他のアプリケーションで使用することですこのプロセスを管理することは手間がかかる場合がありますが、適切なツールを使用することで、...
Googleは、2,000万ドルの寄付を行い、サイバーセキュリティクリニックの創設を支援します
GoogleのCEOであるサンダー・ピチャイ氏は、サイバーセキュリティクリニックのコンソーシアムを支援し、拡大するために2000万ドルを約束しました
データサイエンスプロジェクトでのハードコーディングをやめましょう – 代わりに設定ファイルを使用しましょう
Pythonにおいて効率的に設定ファイルとやり取りする方法
医師たちはバーチャルリアリティでトレーニングします
シミュレーションは外科医を実際の手術に準備させます
私たちの早期警戒システムへのサポート
GoogleのYossi MatiasさんとWMOのインフラストラクチャー部門ディレクターであるAnthony Reaさんが「Early Warnings For All Initiative」について話し合っています
Light & WonderがAWS上でゲーミングマシンの予測保守ソリューションを構築した方法
この記事は、ライトアンドワンダー(L&W)のアルナ・アベヤコーン氏とデニス・コリン氏と共同執筆したものですライトアンドワンダーは、ラスベガスを拠点とするクロスプラットフォームゲーム会社であり、ギャンブル製品やサービスを提供していますAWSと協力して、ライトアンドワンダーは最近、業界初の安全なソリューション「Light & Wonder Connect(LnW Connect)」を開発しました[…]
ディープフェイクビデオを出し抜く
「真実を探し求める時、現実を歪めることが驚くほど簡単になっている」という言葉を訳すと、「真実を求める際に、現実を驚くほど歪めることが簡単になっている」となります
最初のLLMアプリを構築するために知っておく必要があるすべて
言語の進化は、私たち人類を今日まで非常に遠くまで導いてきましたそれによって、私たちは知識を効率的に共有し、現在私たちが知っている形で協力することができるようになりましたその結果、私たちのほとんどは...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.