Learn more about Search Results ISO - Page 37

Plotlyの3Dサーフェスプロットを使用して、地質表面を視覚化する

地球科学の分野においては、地下に存在する地質層の完全な理解が不可欠です層の正確な位置と形状を知ることで、...

機械学習によるストレス検出の洞察を開示

イントロダクション ストレスとは、身体や心が要求や挑戦的な状況に対して自然に反応することです。外部の圧力や内部の思考や感情に対する身体の反応です。仕事に関するプレッシャーや財政的な困難、人間関係の問題、健康上の問題、または重要な人生の出来事など、様々な要因によってストレスが引き起こされることがあります。データサイエンスと機械学習によるストレス検知インサイトは、個人や集団のストレスレベルを予測することを目的としています。生理学的な測定、行動データ、環境要因などの様々なデータソースを分析することで、予測モデルはストレスに関連するパターンやリスク要因を特定することができます。 この予防的アプローチにより、タイムリーな介入と適切なサポートが可能になります。ストレス予測は、健康管理において早期発見と個別化介入、職場環境の最適化に役立ちます。また、公衆衛生プログラムや政策決定にも貢献します。ストレスを予測する能力により、これらのモデルは個人やコミュニティの健康増進と回復力の向上に貢献する貴重な情報を提供します。 この記事は、データサイエンスブログマラソンの一部として公開されました。 機械学習を用いたストレス検知の概要 機械学習を用いたストレス検知は、データの収集、クリーニング、前処理を含みます。特徴量エンジニアリング技術を適用して、ストレスに関連するパターンを捉えることができる意味のある情報を抽出したり、新しい特徴を作成したりすることができます。これには、統計的な測定、周波数領域解析、または時間系列解析などが含まれ、ストレスの生理学的または行動的指標を捉えることができます。関連する特徴量を抽出またはエンジニアリングすることで、パフォーマンスを向上させることができます。 研究者は、ロジスティック回帰、SVM、決定木、ランダムフォレスト、またはニューラルネットワークなどの機械学習モデルを、ストレスレベルを分類するためのラベル付きデータを使用してトレーニングします。彼らは、正解率、適合率、再現率、F1スコアなどの指標を使用してモデルのパフォーマンスを評価します。トレーニングされたモデルを実世界のアプリケーションに統合することで、リアルタイムのストレス監視が可能になります。継続的なモニタリング、更新、およびユーザーフィードバックは、精度向上に重要です。 ストレスに関連する個人情報の扱いには、倫理的な問題やプライバシーの懸念を考慮することが重要です。個人のプライバシーや権利を保護するために、適切なインフォームドコンセント、データの匿名化、セキュアなデータストレージ手順に従う必要があります。倫理的な考慮事項、プライバシー、およびデータセキュリティは、全体のプロセスにおいて重要です。機械学習に基づくストレス検知は、早期介入、個別化ストレス管理、および健康増進に役立ちます。 データの説明 「ストレス」データセットには、ストレスレベルに関する情報が含まれています。データセットの特定の構造や列を持たない場合でも、パーセンタイルのためのデータ説明の一般的な概要を提供できます。 データセットには、年齢、血圧、心拍数、またはスケールで測定されたストレスレベルなど、数量的な測定を表す数値変数が含まれる場合があります。また、性別、職業カテゴリ、または異なるカテゴリ(低、VoAGI、高)に分類されたストレスレベルなど、定性的な特徴を表すカテゴリカル変数も含まれる場合があります。 # Array import numpy as np # Dataframe import pandas as pd #Visualization…

CVPR 2023におけるGoogle

Googleのプログラムマネージャー、Shaina Mehtaが投稿しました 今週は、バンクーバーで開催される最も重要なコンピュータビジョンとパターン認識の年次会議であるCVPR 2023の始まりを迎えます(追加のバーチャルコンテンツもあります)。Google Researchはコンピュータビジョンの研究のリーダーであり、プラチナスポンサーであり、メインカンファレンスで約90の論文が発表され、40以上のカンファレンスワークショップやチュートリアルに積極的に参加しています。 今年のCVPRに参加する場合は、是非、ブースに立ち寄って、最新のマシンパーセプションの様々な分野に応用するための技術を積極的に探求している研究者とお話ししてください。弊社の研究者は、MediaPipeを使用したオンデバイスのMLアプリケーション、差分プライバシーの戦略、ニューラル輝度場技術など、いくつかの最近の取り組みについても話し、デモを行います。 以下のリストでCVPR 2023で発表される弊社の研究についても詳しくご覧いただけます(Googleの所属は太字で表示されています)。 理事会と組織委員会 シニアエリアチェアには、Cordelia Schmid、Ming-Hsuan Yangが含まれます。 エリアチェアには、Andre Araujo、Anurag Arnab、Rodrigo Benenson、Ayan Chakrabarti、Huiwen Chang、Alireza Fathi、Vittorio Ferrari、Golnaz Ghiasi、Boqing Gong、Yedid Hoshen、Varun Jampani、Lu…

Rにおける二元配置分散分析

二元分散分析(Two-way ANOVA)は、二つのカテゴリカル変数が量的連続変数に与える同時効果を評価することができる統計的方法です二元分散分析は…

PyTorchを使った転移学習の実践ガイド

この記事では、転移学習と呼ばれる技術を使用して、カスタム分類タスクに事前学習済みモデルを適応する方法を学びますPyTorchを使用した画像分類タスクで、Vgg16、ResNet50、およびResNet152の3つの事前学習済みモデルで転移学習を比較します

メンテナンス・プロセスの標準化におけるコンピュータ化されたメンテナンス・マネジメント・システムの役割

コンピュータ化されたメンテナンス管理システムを導入する際、複数のプラントやロケーションを持つ組織にとって、メンテナンスオペレーションやワークフロープロセスの標準化は主要な目的の一つですメンテナンスとタスク実行に構造化されたアプローチを確立することの重要性を認識することは、最初の期待以上のものですメンテナンスプロセスの標準化は、機器の信頼性を向上させ、製品やサービスの品質を高めることができますコンピュータ化されたメンテナンス管理システムの役割は、メンテナンスプロセスの標準化にあります

AIフロンティアシリーズ:人材

私が初めて参加した「多業種のブレストセッション」から約3年が経ち、かつて野心的だと考えられていた機械学習の概念が、今では人事部門でも実現可能になっていることに驚かされています...

PaLM 2を紹介します

2023年のGoogle I/Oで、GoogleはPaLM 2という新しい言語モデルを発表しましたこのモデルは、多言語、推論、およびコーディング能力が向上しています

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us