Learn more about Search Results ML - Page 377
- You may be interested
- 大規模データ分析のエンジンとしてのゲー...
- 「バイオメディシンのための検索補完型生...
- Hugging Face Datasets での作業
- 「PyTorchのネステロフモーメンタムの実装...
- スタンフォード大学の研究者がSequenceMat...
- 「VoAGI調査:データサイエンスの支出とト...
- 「ガードレールでLLMを保護する」
- COSPとUSPの内部:GoogleがLLMsの推論を進...
- LangChain:LLMがあなたのコードとやり取...
- GoogleがAI搭載の文法チェッカー機能を追...
- このAI研究は、多モーダル大規模言語モデ...
- CI/CDパイプライン:Azure上のデータ処理...
- 大規模言語モデル:SBERT
- 「プロンプトエンジニアリングの興亡:一...
- 「ChatGPTとScraperを使用して、TripAdvis...
Pythonの依存関係管理:どのツールを選ぶべきですか?
あなたのデータサイエンスプロジェクトが拡大するにつれて、依存関係の数も増えますプロジェクトの環境を再現可能かつメンテナンス可能に保つために、効率的な依存関係を使用することが重要です...
LLMsによる非構造化データから構造化データへの変換
大規模な言語モデルを使用して、文書から洞察を抽出して分析と大規模な機械学習に活用する方法を学びましょうこのウェビナーとライブチュートリアルに参加して、始め方を学びましょう
データサイエンスプロジェクトでのハードコーディングをやめましょう – 代わりに設定ファイルを使用しましょう
Pythonにおいて効率的に設定ファイルとやり取りする方法
このAI論文は、自律走行車のデータセットを対象とし、コンピュータビジョンモデルのトレーニングの匿名化の影響を研究しています
画像匿名化とは、プライバシー保護のために画像から機密情報を変更または削除することです。プライバシー規制に準拠するために重要ですが、匿名化はしばしばデータ品質を低下させ、コンピュータビジョンの開発を妨げます。データ劣化、プライバシーとユーティリティのバランス、効率的なアルゴリズムの作成、モラルと法的問題の調整など、いくつかの課題が存在します。プライバシーを確保しながらコンピュータビジョンの研究とアプリケーションを改善するために、適切な妥協点を見つける必要があります。 画像の匿名化に関する以前のアプローチには、ぼかし、マスキング、暗号化、クラスタリングなどの従来の方法が含まれています。最近の研究では、生成モデルを使用してアイデンティティを置き換えることにより、現実的な匿名化に焦点が当てられています。しかし、多くの方法には匿名性の正式な保証がなく、画像の他の手がかりでアイデンティティが明らかになることがあります。さまざまな影響を持つタスクによって、コンピュータビジョンモデルに与える影響を探究した限られた研究が行われています。公開された匿名化されたデータセットはまれです。 最近の研究では、ノルウェー科学技術大学の研究者が、自律型車両の文脈での重要なコンピュータビジョンタスク、特にインスタンスセグメンテーションおよび人物姿勢推定に注目しました。彼らはDeepPrivacy2に実装されたフルボディと顔の匿名化モデルの性能を評価し、現実的な匿名化アプローチと従来の方法の効果を比較することを目的としました。 記事で評価された匿名化の影響を評価するために提案された手順は次のとおりです。 一般的なコンピュータビジョンデータセットの匿名化。 匿名化されたデータを使用してさまざまなモデルをトレーニングする。 元の検証データセットでモデルを評価する。 著者らは、ぼかし、マスクアウト、現実的な匿名化の3つのフルボディと顔の匿名化テクニックを提案しています。インスタンスセグメンテーション注釈に基づいて匿名化領域を定義します。従来の方法にはマスキングアウトとガウスぼかしがあり、現実的な匿名化にはDeepPrivacy2からの事前トレーニング済みモデルが使用されます。著者らはまた、ヒストグラム均等化と潜在最適化を介してフルボディ合成のグローバルコンテキストの問題にも取り組んでいます。 著者らは、COCOポーズ推定、Cityscapesインスタンスセグメンテーション、BDD100Kインスタンスセグメンテーションの3つのデータセットを使用して匿名化されたデータでトレーニングされたモデルを評価する実験を実施しました。顔の匿名化技術はCityscapesとBDD100Kデータセットにおいてほとんど性能に差がありませんでした。しかし、COCOポーズ推定において、マスクアウトとぼかしの両方が人体との相関関係により性能の大幅な低下を引き起こしました。フルボディの匿名化は、従来の方法でも現実的な方法でも、元のデータセットと比較して性能が低下しました。現実的な匿名化はより優れていましたが、キーポイント検出のエラー、合成の制限、グローバルコンテキストの不一致により、結果が低下しました。著者らはまた、モデルサイズの影響を探究し、COCOデータセットの顔の匿名化において、大きなモデルほど性能が低下することがわかりました。フルボディの匿名化においては、標準的および多変量切り捨て法の両方が性能の向上につながりました。 結論として、この研究は、自律型車両のデータセットを使用してコンピュータビジョンモデルをトレーニングする際に匿名化が及ぼす影響を調査しました。顔の匿名化はインスタンスセグメンテーションにほとんど影響を与えず、フルボディの匿名化は性能を大幅に低下させました。現実的な匿名化は従来の方法よりも優れていましたが、本物のデータの完全な代替品ではありません。モデルのパフォーマンスを損なわずにプライバシーを保護することが重要であることが示されました。この研究は注釈に依存しており、モデルアーキテクチャに制限があるため、匿名化技術を改善し、合成の制限に対処するためのさらなる研究が求められています。自律型車両での人物の合成における課題も指摘されました。 論文をチェックしてください。最新のAI研究ニュース、クールなAIプロジェクトなどを共有する、25k以上のML SubReddit、Discordチャンネル、およびメールニュースレターに参加することをお忘れなく。上記の記事に関する質問や、何か見落としていることがある場合は、[email protected]までメールでお問い合わせください。
Btech卒業後に何をすべきですか?
Btechの後に何をすべきですか?このよくある質問は、最終学年や最近卒業した学生にとって悩みの種です。多くの人々が従来のキャリアパスを選ぶ一方、一部の人々は新しい分野でのキャリアを研究し探求することを決めます。より多くの選択肢を探索し、スキル開発に重点を置き、継続的な学習、進化する技術について常に最新情報を得ることにより、個人は速いペースのBtechの後の旅で成功することができます。この記事では、Btechの後の最良のキャリアオプションについて説明しています。 Btech卒業生の従来のキャリアパス エンジニアの仕事 ソフトウェアエンジニア/開発者: コンピューターサイエンスのBTechを持つソフトウェアエンジニアは、オンラインやモバイルアプリ、データベース管理、ソフトウェアアーキテクチャの開発に参加します。 ハードウェアエンジニア: ハードウェアエンジニアは、コンピューターハードウェアコンポーネントを作成、開発、テストし、最適な動作を確保します。 機械エンジニア: 製品設計、ロボット、産業機械など多様な産業で機械システムを開発、分析、構築します。 電気エンジニア: 電力発電、エレクトロニクス、通信、再生可能エネルギーシステムを計画、開発、維持します。 土木エンジニア: 建設、構造の安全性、環境持続性を維持しながら、インフラプロジェクトの計画、設計、構築、維持を行います。 宇宙航空エンジニア: 航空機、宇宙船、関連技術の設計、開発、テストの責任を担います。 化学エンジニア: 石油化学、医薬品、環境工学、材料科学など、幅広い産業でプロセスを作成、管理します。 環境エンジニア: 環境保護、持続可能性、廃棄物管理のソリューションを提供し、規制に適合します。 大学院研究と研究 MTechまたはME: BTech卒業生は、MTechまたはMEなどの大学院課程を追求することができます。これらには研究の可能性、高度なコースワーク、エンジニアリングの専門分野が含まれます。 MS: BTech卒業生は、研究、コースワーク、協力、論文の達成に焦点を当てた工学のMaster…
MetaのAIが参照メロディに基づいて音楽を生成する方法
2023年6月13日、Meta(以前のFacebook)は、生成音楽モデルであるMusicGenをリリースし、音楽とAIコミュニティに衝撃を与えましたこのモデルは、GoogleのMusicLMを超えるだけでなく...
AIのダークサイドを明らかにする:プロンプトハッキングがあなたのAIシステムを妨害する方法
LLMsによるハッキングを防止し、データを保護するために、AIシステムを保護してくださいこの新興脅威に対するリスク、影響、予防策を学んでください
データサイエンティストとは具体的に何をする人なのでしょうか?
この様々な職務記述の羅列からも明らかなように、データサイエンティストの役割が実際に日々何を含むのかを明確に把握するのは非常に困難であることがあります既存の多くの記事は、...
ChatGPTを使った効率的なデバッグ
大規模言語モデルの力を借りて、デバッグ体験を向上させ、より速く学習する
PatchTST 時系列予測における画期的な技術革新
トランスフォーマーベースのモデルは、自然言語処理の分野(BERTやGPTモデルなど)やコンピュータビジョンなど、多くの分野で成功を収めていますしかし、時間の問題になると...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.