Learn more about Search Results Go - Page 377
- You may be interested
- 「障害を持つ子供たちもゲーマーです」
- 「AIの世界に向けたPythonの再設計」
- 「PythonのリストとNumPyの配列:メモリレ...
- CMU(カーネギーメロン大学)と清華大学の...
- 「Llama 2が登場しました – Hugging...
- 私たちの原則がAlphaFoldの公開を定義する...
- 「監督のギレルモ・デル・トロとティム・...
- リアルタイムで命を救うビッグデータ:IoV...
- 「E.U.は画期的な人工知能規制に合意」
- オリゴが警告を発しています:TorchServe...
- 「コンダ遅すぎ? マンバを試してみて!」
- 「AIオートメーションエージェンシーのリ...
- 「AIによるデータアナリストのテストに挑...
- 無料でWindows 11を提供するChatGPTの方法...
- チャットボットは何と言うのか?
コールセンターにおけるAIソフトウェアが顧客サービスを革命化します
人工知能(AI)技術の急速な進歩により、チャットボットの導入を特に受けた顧客サービスとサポートに変革的なシフトがもたらされました。通信、保険、銀行、公共事業、政府機関など、さまざまな業界が、今後数年間でAIによるソリューションの導入を進める予定です。この次世代の自動化されたサポートシステムの提唱者たちは、比類のない利益を想像していますが、その他の人々は潜在的な落とし穴について懸念を表明しています。この記事では、コールセンターにおけるAIの影響について掘り下げます。それは、優れた顧客体験を提供するか、既存の課題を悪化させるかを検討します。 また読む:ChatGPTは、医師よりも質の高い医療アドバイスを提供する AIによるコールセンターの台頭 人工知能は、近年著しい進歩を遂げ、専門家たちは、顧客サービス業務での広範な採用を予想しています。従来のチャットボットに頼るのではなく、新しい世代のAI駆動システムは、驚異的な能力を示します。彼らは、個々の顧客のニーズに合わせたカスタマイズされた応答を提供するために、継続的に学習し、適応し、膨大な情報を活用することができます。 また読む:Sanctuary AIのPhoenixロボットとTeslaの最新ローンチ、Optimus!に会いましょう! 自動化サポートの二重性 高度なAIに基づく顧客サービスの見通しは有望ですが、その実装と潜在的な欠点については、正当な懸念があります。十分な準備なしに採用に急いだ場合、顧客の体験が失望する可能性があります。自動ループは、人道的支援にアクセスできず、困り果てた顧客が自分自身を取り囲んでいるという現実的な懸念があります。また、意図しない冒涜的または不正確なAIの応答も検討する必要があります。 また読む:ChatGPTがラジオホストに対して偽の告発を生成するため、OpenAIが名誉毀損訴訟に直面しています コールセンターの労働者への影響 コールセンターにおけるAIの導入は、今後10年間で何百万ものコールセンター労働者の大量失業を引き起こすことが予想されています。短期間では、状況は同じくらい厳しいようです。労働者は、クエリの処理に関する提案を提供し、パフォーマンスについて報告する機械による常時監視の見通しに直面しています。この増加した監視は、彼らの仕事の既に厳しい性質を強化し、より高いストレスレベルを引き起こす可能性があります。 また読む:人工知能の急速な上昇は、仕事の喪失を意味します:テックセクターで何千人もの人々が影響を受けています コスト削減と生産性向上のバランス 潜在的な欠点にもかかわらず、ビジネスにとって生成的AIの魅力は否定できません。最近のマッキンゼーの報告によると、顧客サービス機能の改善だけでも、世界中で4,040億ドルの驚異的な利益が得られる可能性があります。これらの潜在的な節約と生産性の向上は、組織がAI駆動のソリューションをさらに探求することを推進するでしょう。したがって、彼らはコスト効率と顧客満足度のバランスを慎重に維持する必要があります。 また読む:生成的AIは年間4.4兆ドルの貢献ができる:マッキンゼー 消費者のAIへの信頼 OpenAIのChatGPT、GoogleのBard、そしてMicrosoftのAI駆動のBing検索エンジンなどのAIチャットボットの出現は、一般大衆を魅了し、その応用についての多くの議論を引き起こしました。しかし、消費者の感情は分かれています。最近の調査によると、74%の回答者が、AIに基づく顧客サービスはライブ代表者とのやり取りよりも悪い体験を提供すると考えています。同様に、63%の人々が人間のエージェントをAIよりも信頼し、わずか6%がチャットボットに傾いています。さらに、カナダ人の大多数(63%)は、パンデミック中にチャットボットを雇用した企業が、ポストパンデミック時にライブ代表者に戻ることを期待しており、そうしない企業には否定的な影響があります。 私たちの意見 人工知能をコールセンターの運用に統合することは、機会と課題の両方を示します。潜在的な利益は、改善された顧客体験や巨大なコスト削減を含みますが、サービスの質やコールセンターの従業員への影響については正当な懸念があります。人間のタッチとAI駆動のサポートの適切なバランスを打つことは、AI時代において顧客サービスを最適化しようとする組織にとって重要です。コールセンターの景色がこの変革的なシフトを経験するにつれ、効率的で共感的な顧客体験の提供を優先し、AI駆動のテクノロジーの利点を受け入れることが不可欠です。
2023年の最高のAI販売アシスタントツール
人工知能の営業アシスタントソリューションは、バーチャル営業アシスタントとしても知られ、様々な業務を自動化することで営業担当者を支援します。これらのAIパワードセールスツールを使用することで、セールスおよびマーケティングチームは日常業務に費やす時間を減らし、戦略的イニシアチブに集中することができます。これは、単にチャットを自動化することだけではなく、リードをスクリーニングすることも含みます。オンライン販売に向けたCovid-19の推進により、人工知能の営業アシスタントはますます重要になっています。 AI営業アシスタントと他の種類のセールス分析ツール、チャットボット、AIアプリケーションの機能には多少の重複がありますが、ルーチンのセールス手順を自動化する能力が向上しており、貴重な先見性を提供しています。ここでは、いくつかの人工知能の営業アシスタントアプリを確認してみましょう。 Warmer.ai 新規ビジネスリードや人材を見つけるために必要なのは、必要な人物にアプローチすることです。しかし、この見込み客に関する適切なデータを見つけ、効果的な最初のメールを書くことは課題です。この点で、Warmer.aiは優れています。AIの特徴を利用して、Warmer.aiは見込み客の栄誉、興味、職位などの推奨タッチポイントを補完することで、メールの個人化を支援します。これにより、レスポンス率、ミーティング予約、効率性が向上し、セールスチームは取引の完了により多くの時間を費やすことができます。 Drift Driftは、リードの資格判定プロセスを迅速化することでセールスサイクルを短縮するプラットフォームです。ユーザーがフォームを記入したり、返信を待ったりする必要はありません。代わりに、即時の対話に重点を置いています。チャットボットが営業アシスタントツールの中心にあり、顧客が質問に回答し、代表者とのアポイントメントを設定できるようにしています。他のマーケティングツールと統合し、訪問者ごとに体験をカスタマイズすることが重要な要素の1つです。 Dooly Dooly.aiは、広く使用されている顧客関係管理ツールであるSalesforceと統合してビジネスを支援します。Doolyは、アプリケーションの起動を待つ時間やタブを切り替える手間を省略することで、この手続きを簡素化します。複数のトランザクションを同時に変更するための便利な方法です。ミーティングノート、ノートテンプレート、パイプラインの更新、タスクマネージャーなどのキー機能があるため、取引とその発展を把握するのが簡単になります。 Troops Troopsは、SlackやMicrosoft Teamsと組み合わせて通知やその他のタスクを自動化するツールです。Salesforceなどの他のセールスツールとの通信にAIを使用しています。これにより、チームはシステム間を移動するのに最小限の時間しか費やさないことができます。シグナルは、収入に影響するアクションに関するリアルタイムメッセージで、重要な機能です。Deal Roomsは、Slackで顧客情報を集約し、チームのコラボレーションを向上させることができます。Commandを使用すると、すべての組み込みツールを1行のコードで編集できます。 TopOpps TopOppsは、トレーニングや開発、アクティビティの追跡、パイプライン管理、予測など、セールスプロセスの多くの側面にAIを使用しています。これにより、セールスチームが日常的に扱わなければならない多くの単調で繰り返しのタスクが省略されます。たとえば、正確なセールス予測により、管理者は重要なセールスKPIについての軽率な決断を回避できます。また、アポイントメントやその他の取引メトリクスなどの情報は自動的にキャプチャされ、リアルタイムでCRMにアップロードされます。 Exceed.ai Exceed.aiのAIインタラクションにより、リード資格判定が簡素化されます。ミーティングのスケジュールも自動化されます。これにより、ダウンロードを検索するために費やす時間を節約し、アカウントエグゼクティブが潜在的なクライアントとのミーティングにより良く準備できるようになります。各見込み客は、ある時点でAIボットによってインタラクトされます。あなたの好みに応じて、テキスト、メール、またはウェブサイトでメッセージを送信することができます。ミーティングが予定され、見込み客はあなたのセールスプレゼンテーションを聞く準備ができます。 Tact.ai Tact.aiの会話型インターフェイスは、WhatsAppを彷彿とさせ、どんなプラットフォームでも顧客とやり取りすることができます。これにより、CRMが、ビジネスと顧客の間の双方向コミュニケーションのインタラクティブなチャネルに変わることを望んでいます。彼らのサービスの1つであるTact Assistantは、代表者が顧客と直接やり取りする必要がなくなります。Tact Portalは、顧客があなたから受け取るサービスに合わせてビジネスとやり取りするオンラインハブです。 SalesDirector セールスチームは、定期的に多くのデータを記録する必要があります。AI営業アシスタントツールのSalesDirectorは、この情報を自動的に記録します。このシステムが提供する分析と洞察力により、管理者は情報に基づいた意思決定を行うことができます。Google Data Studioに加えて、Power…
オッターに会いましょう:大規模データセット「MIMIC-IT」を活用した最先端のAIモデルであり、知覚と推論のベンチマークにおいて最新の性能を実現しています
マルチファセットモデルは、書かれた言語、写真、動画などの様々なソースからのデータを統合し、さまざまな機能を実行することを目指しています。これらのモデルは、視覚とテキストデータを融合させたコンテンツを理解し、生成することにおいて、かなりの可能性を示しています。 マルチファセットモデルの重要な構成要素は、ナチュラルランゲージの指示に基づいてモデルを微調整する指示チューニングです。これにより、モデルはユーザーの意図をより良く理解し、正確で適切な応答を生成することができます。指示チューニングは、GPT-2やGPT-3のような大規模言語モデル(LLMs)で効果的に使用され、実世界のタスクを達成するための指示に従うことができるようになりました。 マルチモーダルモデルの既存のアプローチは、システムデザインとエンドツーエンドのトレーニング可能なモデルの観点から分類することができます。システムデザインの観点では、ChatGPTのようなディスパッチスケジューラを使用して異なるモデルを接続しますが、トレーニングの柔軟性が欠けているため、コストがかかる可能性があります。エンドツーエンドのトレーニング可能なモデルの観点では、他のモダリティからモデルを統合しますが、トレーニングコストが高く、柔軟性が制限される可能性があります。以前のマルチモーダルモデルにおける指示チューニングのデータセットには、文脈に沿った例が欠けています。最近、シンガポールの研究チームが提案した新しいアプローチは、文脈に沿った指示チューニングを導入し、このギャップを埋めるための文脈を持つデータセットを構築しています。 この研究の主な貢献は以下の通りです。 マルチモーダルモデルにおける指示チューニングのためのMIMIC-ITデータセットの導入。 改良された指示に従う能力と文脈的学習能力を持ったオッターモデルの開発。 より使いやすいOpenFlamingoの最適化実装。 これらの貢献により、研究者には貴重なデータセット、改良されたモデル、そしてより使いやすいフレームワークが提供され、マルチモーダル研究を進めるための貴重な資源となっています。 具体的には、著者らはMIMIC-ITデータセットを導入し、OpenFlamingoの文脈的学習能力を維持しながら、指示理解能力を強化することを目的としています。データセットには、文脈的関係を持つ画像とテキストのペアが含まれており、OpenFlamingoは文脈的例に基づいてクエリされた画像-テキストペアのテキストを生成することを目指しています。MIMIC-ITデータセットは、OpenFlamingoの指示理解力を向上させながら、文脈的学習を維持するために導入されました。これには、画像-指示-回答の三つ組と対応する文脈が含まれます。OpenFlamingoは、画像と文脈的例に基づいてテキストを生成するためのフレームワークです。 トレーニング中、オッターモデルはOpenFlamingoのパラダイムに従い、事前学習済みのエンコーダーを凍結し、特定のモジュールを微調整しています。トレーニングデータは、画像、ユーザー指示、GPTによって生成された回答、および[endofchunk]トークンを含む特定の形式に従います。モデルは、クロスエントロピー損失を使用してトレーニングされます。著者らは、Please view this post in your web browser to complete the quiz.トークンで予測目標を区切ることにより、トレーニングデータを分離しています。 著者らは、OtterをHugging Face Transformersに統合し、研究者がモデルを最小限の努力で利用できるようにしました。彼らは、4×RTX-3090…
中国の研究者グループが開発したWebGLM:汎用言語モデル(GLM)に基づくWeb強化型質問応答システム
大規模言語モデル(LLM)には、GPT-3、PaLM、OPT、BLOOM、GLM-130Bなどが含まれます。これらのモデルは、言語に関してコンピュータが理解し、生成できる可能性の限界を大きく押し上げています。最も基本的な言語アプリケーションの一つである質問応答も、最近のLLMの突破によって大幅に改善されています。既存の研究によると、LLMのクローズドブックQAおよびコンテキストに基づくQAのパフォーマンスは、教師ありモデルのものと同等であり、LLMの記憶容量に対する理解に貢献しています。しかし、LLMにも有限な容量があり、膨大な特別な知識が必要な問題に直面すると、人間の期待には及びません。したがって、最近の試みでは、検索やオンライン検索を含む外部知識を備えたLLMの構築に集中しています。 たとえば、WebGPTはオンラインブラウジング、複雑な問い合わせに対する長い回答、同等に役立つ参照を行うことができます。人気があるにもかかわらず、元のWebGPTアプローチはまだ広く採用されていません。まず、多数の専門家レベルのブラウジング軌跡の注釈、よく書かれた回答、および回答の優先順位のラベリングに依存しており、これらは高価なリソース、多くの時間、および広範なトレーニングが必要です。第二に、システムにウェブブラウザとのやり取り、操作指示(「検索」、「読む」、「引用」など)を与え、オンラインソースから関連する材料を収集させる行動クローニングアプローチ(すなわち、模倣学習)は、基本的なモデルであるGPT-3が人間の専門家に似ている必要があります。 最後に、ウェブサーフィンのマルチターン構造は、ユーザーエクスペリエンスに対して過度に遅いことがあり、WebGPT-13Bでは、500トークンのクエリに対して31秒かかります。本研究の清華大学、北京航空航天大学、Zhipu.AIの研究者たちは、10億パラメータのジェネラル言語モデル(GLM-10B)に基づく、高品質なウェブエンハンスド品質保証システムであるWebGLMを紹介します。図1は、その一例を示しています。このシステムは、効果的で、手頃な価格で、人間の嗜好に敏感であり、最も重要なことに、WebGPTと同等の品質を備えています。システムは、LLM-拡張検索器を含む、いくつかの新しいアプローチや設計を使用して、良好なパフォーマンスを実現しています。精製されたリトリーバーと粗い粒度のウェブ検索を組み合わせた2段階のリトリーバーである。 GPT-3のようなLLMの能力は、適切な参照を自発的に受け入れることです。これは、小型の密集リトリーバーを改良するために洗練される可能性があります。引用に基づく適切なフィルタリングを使用して高品質のデータを提供することで、LLMはWebGPTのように高価な人間の専門家に頼る必要がありません。オンラインQAフォーラムからのユーザーチャムアップシグナルを用いて教えられたスコアラーは、さまざまな回答に対する人間の多数派の嗜好を理解することができます。 図1は、WebGLMがオンラインリソースへのリンクを含むサンプルクエリに対する回答のスナップショットを示しています。 彼らは、適切なデータセットアーキテクチャがWebGPTの専門家ラベリングに比べて高品質のスコアラーを生成できることを示しています。彼らの定量的な欠損テストと詳細な人間評価の結果は、WebGLMシステムがどれだけ効率的かつ効果的かを示しています。特に、WebGLM(10B)は、彼らのチューリングテストでWebGPT(175B)を上回り、同じサイズのWebGPT(13B)よりも優れています。Perplexity.aiの唯一の公開可能なシステムを改善するWebGLMは、この投稿時点で最高の公開可能なウェブエンハンスドQAシステムの一つです。結論として、著者らは次のことを提供しています。・人間の嗜好に基づく、効果的なウェブエンハンスド品質保証システムであるWebGLMを構築しました。WebGPT(175B)と同等のパフォーマンスを発揮し、同じサイズのWebGPT(13B)よりもはるかに優れています。 WebGPTは、LLMsと検索エンジンによって動力を与えられた人気システムであるPerplexity.aiをも凌駕します。•彼らは、WebGLMの現実世界での展開における制限を特定しています。彼らは、ベースラインシステムよりも効率的でコスト効果の高い利点を実現しながら、高い精度を持つWebGLMを可能にするための新しい設計と戦略を提案しています。•彼らは、Web強化QAシステムを評価するための人間の評価メトリックを定式化しています。広範な人間の評価と実験により、WebGLMの強力な能力が示され、システムの将来的な開発についての洞察が生成されました。コードの実装はGitHubで利用可能です。
機械学習モデルを成長させる方法の学習
新しいLiGO技術により、大規模な機械学習モデルのトレーニングを加速し、AIアプリケーションの開発にかかる費用と環境負荷を削減します
Amazonの後、アメリカの製造業を加速させる野心
ジェフ・ウィルク氏は、Amazonの世界的な消費者ビジネスの元CEOであり、LGOプレイブックを彼の新しい使命である米国の製造業の再活性化にもたらします
医療界はAIに備えているのか? 医師、コンピューターサイエンティスト、政策立案者たちは、慎重な楽観主義を示しています
人工知能の会話が今では主流となり、2023年のMIT-MGB AI Curesカンファレンスの参加者数は過去の年に比べ倍増しました
Pythonで絶対に犯してはいけない10の失敗
Pythonを学び始めると、多くの場合、悪い習慣に遭遇することがありますこの記事では、Python開発者としてのレベルを上げるためのベストプラクティスを学びます私が覚えているのは、私が...
トップ5AI開発企業:あなたのビジネスを変革するために
現代の急速なビジネス界において、人工知能(AI)は企業が競争力を維持するためにますます重要になっていますルーティンワークを自動化し、データに基づく意思決定を行う力を持つAIは、...
新しい方法:AIによって地図がより没入感あるものになる
AIの進歩により、マップで経路を理解する新しい方法がありますさらに、開発者向けの新しい没入型ツールもあります
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.