Learn more about Search Results ML - Page 367

深層学習を用いた強力なレコメンデーションシステムの構築

顧客に適切なタイミングで適切な商品を提案することは、あらゆる業界において共通の課題です例えば、銀行業界では銀行員は常に顧客に高度に関連性のあるサービスを提案することを求めています...

マーケティング予算の最適化方法

マーケティングミックスモデルは、異なるマーケティングチャネルが売上に与える影響を理解するための強力なツールですマーケターはマーケティングミックスモデルを構築することにより、各要素の貢献度を定量化することができます

新しい言語モデルを評価するための3つの重要な方法

毎週新しいLLMがリリースされますが、私のように考えると、これはついに私がLLMを利用したいすべてのユースケースに適合するのでしょうか?このチュートリアルでは、私は...を共有します

ビジネス学生からテック業界のデータサイエンティストへ

LinkedInでよく質問される中でも、一つは常に目立つ質問がありますそれは、なぜ私がビジネスからエンジニアリングに一夜にして転身し、...となったのかというものです

AI vs. 予測分析:包括的な分析

人工知能(AI)と予測分析は、すべてのビジネスの運営方法を再構築しています。この記事では、AIと予測分析のエンジニアリングへの応用に焦点を当てます。まず、人工知能(AI)の一般的な概念について説明します。次に、エンジニアリングに応用される予測エンジニアリング分析の詳細に入ります。 機械学習やディープラーニングなど、人工知能のアプローチの詳細を説明します。主な違いが強調されます。記事の最後までに、革新的なディープラーニング技術が過去のデータを活用して長時間かかる高価な実験テストや3Dシミュレーション(CAE)の結果を正確に予測する方法を理解することができます。 異なる分析戦略 多くの種類の分析戦略があります:記述的分析、診断的分析、予測的分析。主な違いは何ですか? 記述的分析と診断的分析は、異なる焦点を持っています。記述的分析は、歴史的なデータを要約し解釈して何が起こったのかについての洞察を提供します。診断的分析は、特定のイベントがなぜ発生したのかを分析し、因果関係を特定することで一歩進んでいます。 エンジニアリングにおける予測分析は、新製品の性能を実験室でテストする前に予測するなど、製品設計や製造におけるイベントの将来の結果を予測することに焦点を当てています。 予測分析は、エンジニアにとって興味のある4番目の分析のタイプにつながります:最適な結果を得るための行動の推奨を含む指示的分析です。 AIと人間-競争か協力か? AIはエンジニアを置き換えるのでしょうか? いいえ、むしろ、より多くの権限を与え、意思決定に影響を与える力をエンジニアに与え、製品設計や予測保守のデジタルスレッドをよりスマートに使用します。 AIは強力なツールとして機能し、エンジニアの能力を高め、意思決定プロセスを向上させるための実効性のある洞察を提供します。 人工知能と予測分析 人工知能は、人間の知性をシミュレートし、通常人間の認識を必要とするタスクを実行できるインテリジェントな機械の開発を包括する分野です。予測分析は、データ、統計的アルゴリズム、および機械学習技術を使用して、過去のデータとリアルタイムデータに基づいて将来の結果を予測することに特化しています。この分析の分野は、過去のパターンとトレンドを活用して、将来のイベント、行動、トレンドを一定の精度で予測するためにさまざまな機械学習アルゴリズムを利用します。 AIと予測分析の概要 人工知能(AI)は、最も広い意味で、機械が学習し、理解し、自律的に意思決定を行うための設計されたテクニックとアルゴリズムの幅広い範囲を指します。 人工知能システムは、膨大な量のデータを処理し分析し、パターンを特定し、意思決定と自動化を推進する洞察を生成することができます。 一方、予測分析は、過去の出来事(データマイニングで取得し順序づけられたもの)を使用して未来の結果を正確に予測するための技術に焦点を当てています。他のビジネスインテリジェンス技術とは異なり、予測分析は将来を見据えており、過去のイベントを利用して将来のイベント、行動、トレンドを予測するために使用されます。 AI以前の予測分析:伝統的な3Dシミュレーション(CAE) AIの登場以前、90年代から、エンジニアは統計的または物理ベースのモデルを使用して、自分たちの物理的な知識を包括した予測分析ツールを提供することができました。 伝統的な予測モデリングワークフローの例として、エンジニアは、車のジオメトリ(CAD = コンピュータ支援設計)に基づいて車の空気力学的性能を予測することができました。空気力学はナビエ・ストークスなどの物理方程式によって制御されていますが、エンジニアリング予測分析の複雑なアルゴリズムは、合理的な時間内に回答を提供するために、並列計算を備えたハードウェアへの投資が必要でした(数日または数時間)。 AIを活用した予測分析:3Dシミュレーション(NCS) 2018年以来、Neural…

ChatGPT CLI コマンドラインインターフェースをChatGPTに変換する

コマンドプロンプトでGPTモデルを使用するための簡単な方法

AI信頼曲線の先端に立つために オープンソースの責任あるAIツールキットが明らかになりました

今日の急速に進化する技術の風景において、人工知能(AI)は私たちの生活の多くの側面に影響を与える強力なツールとして浮上しています。しかし、AIの倫理的な使用に関する懸念もその進展と並行して増大しています。AIの誤用は偏った結果をもたらし、公衆の信頼を侵食する可能性があります。これらの問題に対処するため、責任あるAIの実践が注目を集めており、業界のリーダーたちはオープンソースの責任あるAIツールキットの開発をリードしています。これらのツールキットとそれらがAIアプリケーションにおける公平さ、透明性、責任を促進する上でどれほど重要かを探ってみましょう。 AI実装における信頼の欠如 アクセンチュアの2022年のテックビジョン調査によれば、世界の消費者のうちわずか35%しか組織がAIを実装する方法を信頼していないという衝撃的な統計が明らかになりました。さらに、77%の人々が、組織はAIの誤用に対して責任を負うべきだと考えています。これらの調査結果は、公平さと責任を優先する責任あるAIの実践を採用するための緊急性を示しています。 関連記事:EUがAIルールで立場を表明 責任あるAIの実践が主流に 大手テック企業は、責任あるAIの重要性を認識し、責任あるAIの実践のための専門の内部チームや部門を設立しています。Finarkein Analyticsの共同創設者兼CEOであるNikhil Kurhe氏は、責任あるAIの実践が主流化し、倫理的なAIの原則がより広く採用されるようになっていると強調しています。 責任あるAIツールキットの力 責任あるAIツールキットは、AIアプリケーションやシステムが公平性、堅牢性、透明性を持って開発されることを保証します。AI開発者はこれらのツールキットを統合することで、公正で責任あるモデルを作成し、ユーザーの信頼を醸成することができます。 TensorFlow Federated:分散型機械学習の強化 TensorFlow Federated(TFF)は分散型機械学習のために設計されたオープンソースのフレームワークです。TFFを使用することで、複数のクライアントでローカルなトレーニングデータを使用して共有のグローバルモデルをトレーニングするフェデレーテッドラーニング(FL)の研究や実験を行うことができます。TFFは開発者に新しいアルゴリズムを探索し、モデルでフェデレーテッドラーニングをシミュレートする機能を提供します。 関連記事:TensorFlowを使用した責任あるAIの構築方法 TensorFlow Model Remediation:パフォーマンスバイアスの解消 Model Remediationライブラリは、モデルの作成とトレーニング中のパフォーマンスバイアスからのユーザーへの害を減らすための解決策を提供します。このツールキットにより、MLプラクティショナーは正確性だけでなく、社会的責任も持つモデルを作成することができます。 TensorFlow Privacy:個人データの保護 Google Researchが開発したTensorFlow…

なぜディープラーニングは常に配列データ上で行われるのか?新しいAI研究は、データからファンクタまでを一つとして扱う「スペースファンクタ」を紹介しています

暗黙のニューラル表現(INR)またはニューラルフィールドは、3D座標を3D空間の色と密度の値にマッピングすることによって、3Dシーンなどのフィールドを表現する座標ベースのニューラルネットワークです。最近、ニューラルフィールドは、写真、3D形状/シーン、映画、音楽、医療画像、気象データなどの信号を表現する手段としてコンピュータビジョンで注目されています。 従来のピクセルなどの配列表現を処理する従来のアプローチではなく、最近の研究では、これらのフィールド表現に直接深層学習を行うためのfunctaというフレームワークが提案されています。このフレームワークは、生成、推論、分類など、多くの研究領域で良好なパフォーマンスを発揮します。これらの領域には、画像、ボクセル、気候データ、3Dシーンなどが含まれますが、通常はCelebA-HQ 64 64やShapeNetなどの小さなまたは単純なデータセットでのみ動作します。 以前のfunctaの研究では、比較的小さなデータセットでも多くの異なるモダリティに対してニューラルフィールド上での深層学習が可能であることが示されました。しかし、CIFAR-10の分類および生成タスクでは、この方法はパフォーマンスが低かったです。これは、CIFAR-10のニューラルフィールド表現が非常に正確であり、ダウンストリームのタスクを完了するために必要なすべてのデータを含んでいるはずなので、研究者たちにとって驚きでした。 DeepMindとハイファ大学による新しい研究では、functaの適用範囲をより広範かつ複雑なデータセットに拡張するための戦略を提案しています。まず、彼らは自身の方法を使用して、CelebA-HQ上で報告されたfunctaの結果を再現できることを示しています。次に、それをCIFAR-10のダウンストリームタスクに適用し、分類および生成の結果が驚くほど低いことを報告しています。 空間functaは、functaの拡張として、フラットな潜在ベクトルを空間的に順序付けられた潜在変数の表現で置き換えます。その結果、各空間インデックスの特徴は、すべての可能な場所からデータを収集するのではなく、その場所に固有の情報を収集することができます。この小さな調整により、位置エンコーディングを持つトランスフォーマーやUNetなどのより洗練されたアーキテクチャを使用して、生成、分類などのダウンストリームタスクを解決することができます。これらのアーキテクチャは、空間的に整理されたデータに適した帰納的なバイアスを持っています。 これにより、functaフレームワークは、256×256解像度のImageNet-1kなどの複雑なデータセットに対応できるようになります。調査結果はまた、CIFAR-10の分類および生成における制約が空間functaによって解決されることを示しています。ViTsと同等の分類結果とLatent Diffusionと同等の画像生成結果が得られます。 チームは、ニューラルフィールドがこれらの高次元のモダリティにおいて、配列表現の冗長な情報をより効率的な方法で捉えているため、functaフレームワークが大規模なスケールで輝くと考えています。

Google AIは、MediaPipe Diffusionプラグインを導入しましたこれにより、デバイス上で制御可能なテキストから画像生成が可能になります

最近、拡散モデルはテキストから画像を生成する際に非常に成功を収め、画像の品質、推論のパフォーマンス、および創造的な可能性の範囲の大幅な向上をもたらしています。しかし、効果的な生成管理は、特に言葉で定義しにくい条件下では依然として課題となっています。 Googleの研究者によって開発されたMediaPipe拡散プラグインにより、ユーザーの制御下でデバイス内でのテキストから画像の生成が可能になります。本研究では、デバイスそのもの上で大規模な生成モデルのGPU推論に関する以前の研究を拡張し、既存の拡散モデルおよびそのLow-Rank Adaptation(LoRA)のバリエーションに統合できるプログラマブルなテキストから画像の生成の低コストなソリューションを提供します。 拡散モデルでは、イテレーションごとに画像の生成が行われます。拡散モデルの各イテレーションは、ノイズが混入した画像から目標の画像までを生成することで始まります。テキストのプロンプトを通じた言語理解は、画像生成プロセスを大幅に向上させています。テキストの埋め込みは、テキストから画像の生成のためのモデルにリンクされ、クロスアテンション層を介して結びつけられます。ただし、物体の位置や姿勢などの詳細は、テキストのプロンプトを使用して伝えるのがより困難な例です。研究者は、条件画像からの制御情報を拡散に追加することで、拡散を利用して制御を導入します。 Plug-and-Play、ControlNet、およびT2Iアダプターの方法は、制御されたテキストから画像を生成するためによく使用されます。Plug-and-Playは、入力画像から状態をエンコードするために、拡散モデル(Stable Diffusion 1.5用の860Mパラメータ)のコピーと、広く使用されているノイズ除去拡散暗黙モデル(DDIM)逆推定手法を使用します。これにより、入力画像から初期ノイズ入力を導出します。コピーされた拡散からは、自己注意の空間特徴が抽出され、Plug-and-Playを使用してテキストから画像への拡散に注入されます。ControlNetは、拡散モデルのエンコーダーの訓練可能な複製を構築し、ゼロで初期化されたパラメータを持つ畳み込み層を介して接続し、条件情報をエンコードし、それをデコーダーレイヤーに渡します。残念ながら、これによりサイズが大幅に増加し、Stable Diffusion 1.5では約450Mパラメータとなり、拡散モデル自体の半分となります。T2I Adapterは、より小さなネットワーク(77Mパラメータ)であるにもかかわらず、制御された生成で同等の結果を提供します。条件画像のみがT2I Adapterに入力され、その結果がすべての後続の拡散サイクルで使用されます。ただし、このスタイルのアダプターはモバイルデバイス向けではありません。 MediaPipe拡散プラグインは、効果的かつ柔軟性があり、拡張性のある条件付き生成を実現するために開発されたスタンドアロンネットワークです。 訓練済みのベースラインモデルに簡単に接続できる、プラグインのようなものです。 オリジナルモデルからの重みを使用しないゼロベースのトレーニングです。 モバイルデバイス上でほとんど追加費用なしにベースモデルとは独立して実行可能なため、ポータブルです。 プラグインはそのネットワーク自体であり、その結果はテキストから画像への変換モデルに統合されます。拡散モデル(青)に対応するダウンサンプリング層は、プラグインから取得した特徴を受け取ります。 テキストから画像の生成のためのモバイルデバイス上でのポータブルなオンデバイスパラダイムであるMediaPipe拡散プラグインは、無料でダウンロードできます。条件付きの画像を取り込み、多スケールの特徴抽出を使用して、拡散モデルのエンコーダーに適切なスケールで特徴を追加します。テキストから画像への拡散モデルと組み合わせると、プラグインモデルは画像生成に条件信号を追加します。プラグインネットワークは、相対的にシンプルなモデルであるため、パラメータはわずか6Mとなっています。モバイルデバイスでの高速推論を実現するために、MobileNetv2は深度方向の畳み込みと逆ボトルネックを使用しています。 基本的な特徴 自己サービス機械学習のための理解しやすい抽象化。低コードAPIまたはノーコードスタジオを使用してアプリケーションを修正、テスト、プロトタイプ化、リリースするために使用します。 Googleの機械学習(ML)ノウハウを使用して開発された、一般的な問題に対する革新的なMLアプローチ。 ハードウェアアクセラレーションを含む完全な最適化でありながら、バッテリー駆動のスマートフォン上でスムーズに実行するために十分に小さく効率的です。

合成データのフィールドガイド

データを扱いたい場合、どのような選択肢がありますか?できるだけざっくりした回答をお伝えします実際のデータを入手するか、偽のデータを入手するかのどちらかです前回の記事では、私たちは...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us