Learn more about Search Results Yi - Page 35

データサイエンスによる在庫最適化:Pythonによるハンズオンチュートリアル

在庫最適化は、トリッキーなパズルを解くようなものです広範な問題として、さまざまなドメインで発生しますそれは、店舗のためにどのくらいの商品を注文するかを理解することです自転車を考えてみてください...

「神秘的なニューラルマジックの解明:アクティベーション関数の探求」

アクティベーション関数の解読:目的、選択、タイミングの謎を解く

「AIにおけるプロダクションシステムとは何ですか?例、動作方法、その他」

AIプロダクションシステムは意思決定の基盤です。これらのシステムは、製造ルールによって複雑なタスクを自動化し、データを効率的に処理して洞察を生成します。これらは、グローバルデータベース、製造ルール、制御システムから構成される知識集約型のプロセスを容易にする役割を果たします。その主な特徴は、シンプルさ、モジュラリティ、適応性、修正可能性です。AIプロダクションシステムは、前方推論や後方推論などの制御戦略に基づいて、その特性に応じてさまざまなタイプに分類されます。AIにおけるプロダクションシステムの理解は、AIの潜在能力を活用し、機械学習と統合し、展開時の倫理的な考慮事項に対処するために重要です。 プロダクションシステムの構成要素 AIプロダクションシステムの構成要素は、次の3つの要素から成り立ちます: グローバルデータベース: グローバルデータベースはシステムのメモリとして機能し、操作に関連する事実、データ、知識を格納します。これは製造ルールが情報を参照して適切な意思決定を行い、結論を導くためのリポジトリです。 製造ルール: 製造ルールはシステムの中核となる論理を形成します。これらは、意思決定を行う際にシステムが従うためのガイドラインのセットです。これらの規則は、さまざまな入力や状況に対するシステムの反応を定義します。 制御システム: 制御システムは製造ルールの実行を管理します。ルールが適用される順序を決定し、効率的な処理とシステムのパフォーマンスの最適化を確保します。 AIにおけるプロダクションシステムの特徴 AIプロダクションシステムは、自動化された意思決定や問題解決のための多様で強力なツールとなるいくつかの重要な特徴を備えています: シンプリシティ: プロダクションシステムは、ルールのエンコードと実行を簡単に行う方法を提供します。これにより、開発者やドメインの専門家にとってアクセスしやすくなります。 モジュラリティ: これらのシステムはモジュール化されたコンポーネントから構成されており、ルールの追加、削除、または変更を行うことなくシステム全体に影響を与えずに行うことができます。このモジュラリティは柔軟性とメンテナンスの容易さを向上させます。 修正可能性: AIプロダクションシステムは非常に適応性があります。ルールは広範囲の再設計なしで更新や置換ができるため、システムが最新の要件に合わせて調整され、進化し続けることができます。 知識集約型: これらのシステムは知識豊富なタスクの処理に優れています。包括的なグローバルデータベースに依存しています。 適応性: AIプロダクションシステムは新しいデータやシナリオに動的に適応することができます。この適応性により、システムを持続的に改善することができます。 AIにおけるプロダクションシステムの分類 AIプロダクションシステムは、次の4つの一般的な分類に分類されます: 単調プロダクションシステム:…

「CMUの研究者たちは、スロット中心のモデル(Slot-TTA)を用いたテスト時の適応を提案していますこれは、シーンを共通してセグメント化し、再構築するスロット中心のボトルネックを備えた半教師付きモデルです」

コンピュータビジョンの最も困難で重要なタスクの1つは、インスタンスセグメンテーションです。画像や3Dポイントクラウド内のオブジェクトを正確に区別し、カテゴリ分けする能力は、自律走行から医療画像解析までさまざまなアプリケーションに基盤となるものです。これらの最先端のインスタンスセグメンテーションモデルの開発においては、長年にわたって著しい進歩が達成されてきました。しかし、これらのモデルは、しばしばトレーニング分布から逸脱した多様な現実のシナリオとデータセットに対して助けが必要です。セグメンテーションモデルをこれらの分布外(OOD)シナリオに適応させるというこの課題は、革新的な研究を促しています。そのような画期的なアプローチの1つであるSlot-TTA(テスト時適応)は、非常に注目されています。 計算機ビジョンの急速な進化の中で、インスタンスセグメンテーションモデルは顕著な進歩を遂げ、画像や3Dポイントクラウド内のオブジェクトを認識し、正確にセグメント化することが可能となりました。これらのモデルは、医療画像解析から自動運転車まで、さまざまなアプリケーションの基盤となっています。しかし、それらは共通の困難な敵に直面しています。それは、トレーニングデータを超える多様な現実のシナリオとデータセットに適応することです。異なるドメイン間でシームレスに移行することのできなさは、これらのモデルを効果的に展開するための重要な障壁となっています。 カーネギーメロン大学、Google Deepmind、Google Researchの研究者たちは、この課題に対処する画期的なソリューションであるSlot-TTAを発表しました。この新しいアプローチは、インスタンスセグメンテーションのテスト時適応(TTA)に設計されています。Slot-TTAは、スロット中心の画像とポイントクラウドレンダリングコンポーネントの能力と最先端のセグメンテーション技術を結びつけています。Slot-TTAの核となるアイデアは、インスタンスセグメンテーションモデルがOODシナリオに動的に適応できるようにすることであり、これにより精度と汎用性が大幅に向上します。 Slot-TTAは、その主なセグメンテーション評価指標として調整済みランド指数(ARI)の基礎に基づいて動作します。Slot-TTAは、マルチビューの姿勢付きRGB画像、単一ビューのRGB画像、複雑な3Dポイントクラウドなど、さまざまなデータセットで厳密なトレーニングと評価を行います。Slot-TTAの特徴的な特徴は、テスト時適応のための再構成フィードバックを活用する能力です。このイノベーションは、以前に見たことのない視点とデータセットに対してセグメンテーションとレンダリングの品質を反復的に改善することを含みます。 マルチビューの姿勢付きRGB画像において、Slot-TTAは強力な競合相手として浮上します。その適応性は、MultiShapeNetHard(MSN)データセットの包括的な評価によって示されます。このデータセットには、リアルワールドのHDR背景に対して注意深くレンダリングされた51,000以上のShapeNetオブジェクトが含まれています。MSNデータセットの各シーンには、Slot-TTAのトレーニングとテストのために入力ビューとターゲットビューに戦略的に分割された9つの姿勢付きRGBレンダリング画像があります。研究者たちは、トレーニングセットとテストセットの間のオブジェクトインスタンスとシーン中のオブジェクトの数に重なりがないように特別な配慮をしています。この厳格なデータセットの構築は、Slot-TTAの堅牢性を評価するために重要です。 評価では、Slot-TTAはMask2Former、Mask2Former-BYOL、Mask2Former-Recon、Semantic-NeRFなどのいくつかのベースラインと対決します。これらのベースラインは、Slot-TTAのパフォーマンスをトレーニング分布内外で比較するためのベンチマークです。その結果は驚くべきものです。 まず最初に、OODシーンにおいて特にMask2Formerと比較して、Slot-TTA with TTAは優れた性能を発揮します。これは、Slot-TTAが多様な現実のシナリオに適応する能力の優れていることを示しています。 次に、Mask2Former-BYOLにおけるBartlerらの自己教師あり損失の追加は、改善をもたらさないことが明らかになります。これは、すべてのTTA手法が同じくらい効果的ではないことを強調しています。 さらに、セグメンテーション監督なしのSlot-TTAは、OSRT(Sajjadi et al., 2022a)のようなクロスビュー画像合成にのみトレーニングされたバリアントと比較して、Mask2Formerのような監督セグメンターに比べて大幅に性能が低下します。この観察結果は、効果的なTTAのためには訓練中のセグメンテーション監督の必要性を強調しています。 Slot-TTAの能力は、新しい、以前に見たことのないRGB画像ビューの合成と分解にも広がります。前述のデータセットとトレーニングとテストの分割を使用して、研究者はSlot-TTAのピクセル単位の再構成品質とセグメンテーションARIの精度を、5つの新しい、以前に見たことのない視点について評価します。この評価には、TTAのトレーニング中に見られなかったビューも含まれます。その結果は驚くべきものです。 Slot-TTA(Slot-centric Temporal Test-time Adaptation)による未知の視点におけるレンダリングの品質は、テスト時の適応によって大幅に向上し、新しいシナリオでのセグメンテーションとレンダリングの品質を向上させる能力を示しています。これに対し、強力な競合であるSemantic-NeRFは、これらの未知の視点への一般化に苦労しており、Slot-TTAの適応性と潜在能力を示しています。 結論として、Slot-TTAはコンピュータビジョンの分野における重要な進歩を表しており、多様な現実世界のシナリオにセグメンテーションモデルを適応させるという課題に取り組んでいます。スロット中心のレンダリング技術、高度なセグメンテーション手法、およびテスト時の適応を組み合わせることで、Slot-TTAはセグメンテーションの精度と汎用性の両方で顕著な改善を提供します。この研究は、モデルの制約を明らかにするだけでなく、コンピュータビジョンの将来のイノベーションへの道を開拓します。Slot-TTAは、コンピュータビジョンの絶えず進化する領域で、インスタンスセグメンテーションモデルの適応性を向上させることを約束します。

メディアでの顔のぼかしの力を解き放つ:包括的な探索とモデルの比較

現代のデータ駆動型の世界において、個人のプライバシーと匿名性を確保することは非常に重要です個人のアイデンティティを保護したり、GDPRなどの厳しい規制に準拠したりすることから、...

「トランスフォーマーとサポートベクターマシンの関係は何ですか? トランスフォーマーアーキテクチャにおける暗黙のバイアスと最適化ジオメトリを明らかにする」

自己注意機構により、自然言語処理(NLP)は革新を遂げました。自己注意機構は、入力シーケンス内の複雑な関連を認識するためのトランスフォーマーデザインの主要な要素であり、関連トークンの関連性を評価することで、入力シーケンスのさまざまな側面に優先度を与えます。この他の技術は、強化学習、コンピュータビジョン、およびNLPアプリケーションにとって重要な長距離の関係を捉えるのに非常に優れていることが示されています。自己注意機構とトランスフォーマーは、GPT4、Bard、LLaMA、ChatGPTなどの複雑な言語モデルの作成を可能にし、驚異的な成功を収めています。 トランスフォーマーと最適化の風景におけるトランスフォーマーの暗黙のバイアスを説明できますか?勾配降下法で訓練された場合、注意層はどのトークンを選択し、組み合わせますか?ペンシルベニア大学、カリフォルニア大学、ブリティッシュコロンビア大学、ミシガン大学の研究者たちは、注意層の最適化ジオメトリを(Att-SVM)ハードマックスマージンSVM問題と結びつけることで、これらの問題に答えています。この問題では、各入力シーケンスから最良のトークンを分離して選択します。実験結果は、この形式が以前の研究に基づいて構築され、実際的に重要であり、自己注意のニュアンスを明らかにすることを示しています。 定理 1 以下では、入力シーケンスX、Z ∈ RT×d(長さT、埋め込み次元d)を使用して、基本的なクロスアテンションと自己注意モデルを調査しています。ここで、訓練可能なキー、クエリ、バリューマトリックスは、K、Q ∈ Rd×m、およびV ∈ Rd×vです。S( . )は、行ごとに適用されるソフトマックス非線形性を示しています。XQK⊤X⊤に対して適用されます。Z ← Xと設定することで、自己注意(1b)はクロスアテンション(1a)の特別なケースであることがわかります。メジャーな発見を明らかにするために、予測のためにZの初期トークンを使用することを検討します。ここで、zで表されます。 具体的には、次のように表される減少する損失関数l(): R Rによる経験的リスク最小化を扱っています。ラベルYi ∈ {−1, 1}および入力Xi ∈ RT×d、zi ∈…

「ビルドしてプレイ!LLM搭載のあなた自身のV&Lモデル!」

大型言語モデル(LLM)はますますその価値を示しています画像をLLMに組み込むことで、ビジョン言語モデルとしてさらに有用になりますこの記事では、...

「ODSC West 2023に登場する10のトレンディングトピック」

ODSC Westまで残り1か月を切りました!ジェネラティブAI、LLMs、MLOps、機械学習、ディープラーニングなどに関する300時間以上の実践トレーニングセッション、ワークショップ、トークをお楽しみにしてくださいここではすべての素晴らしいセッションを紹介することはできませんが、以下は代表的なリストです...

物体検出リーダーボード

リーダーボードとモデルの評価の世界へようこそ。前回の投稿では、大規模言語モデルの評価について説明しました。今日は、異なるが同じくらい挑戦的な領域、つまり物体検出に乗り出します。 最近、オブジェクト検出のリーダーボードをリリースしました。このリーダーボードでは、ハブで利用可能な物体検出モデルをいくつかのメトリックに基づいてランキングしています。このブログでは、モデルの評価方法を実証し、物体検出で使用される一般的なメトリック、Intersection over Union (IoU)、Average Precision (AP)、Average Recall (AR)の謎を解き明かします。さらに重要なことは、評価中に発生する可能性のある相違点や落とし穴に焦点を当て、モデルのパフォーマンスを批判的に理解し評価できる知識を身につけることです。 すべての開発者や研究者は、正確に物体を検出し区別できるモデルを目指しています。私たちのオブジェクト検出リーダーボードは、彼らのアプリケーションのニーズに最も適したオープンソースモデルを見つけるための正しい場所です。しかし、「正確」とはこの文脈では本当に何を意味するのでしょうか?どのメトリックを信頼すべきでしょうか?それらはどのように計算されるのでしょうか?そして、さらに重要なことは、なぜいくつかのモデルが異なるレポートで相違した結果を示すことがあるのかということです。これらのすべての質問にこのブログで答えます。 では、一緒にこの探求の旅に乗り出し、オブジェクト検出リーダーボードの秘密を解き明かしましょう!もしも紹介を飛ばして、物体検出メトリックの計算方法を学びたい場合は、メトリックセクションに移動してください。オブジェクト検出リーダーボードを基に最良のモデルを選ぶ方法を知りたい場合は、オブジェクト検出リーダーボードセクションを確認してください。 目次 はじめに 物体検出とは メトリック 平均適合率(Average Precision)とは、どのように計算されるのか? 平均再現率(Average Recall)とは、どのように計算されるのか? 平均適合率と平均再現率のバリエーションとは? オブジェクト検出リーダーボード メトリックに基づいて最適なモデルを選ぶ方法は? 平均適合率の結果に影響を与えるパラメータは? 結論…

「人物再識別入門」

「人物再識別」は、異なる非重複カメラビューに現れる個人を識別するプロセスですこのプロセスは、顔認識に頼らずに、服装を考慮します...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us