Learn more about Search Results 参考文献 - Page 35
- You may be interested
- 複雑なテキスト分類のユースケースにおい...
- トップ40+の生成AIツール(2023年10月)
- 「Amazon SageMakerを使用して、薬剤探索...
- このAI研究では、SMPLer-Xという名前のモ...
- 2023年の機械学習研究におけるトップのデ...
- 「Langchainとは何ですか?そして、大規模...
- アデプトAIはFuyu-8Bをオープンソース化し...
- head()とtail()関数の説明と例、コード
- 部屋温超伝導体の主張を支持する研究
- 「Adversarial Autoencoders オートエンコ...
- 「ジェネレーティブAIがビジネス、健康医...
- 「ウイルスの正義を理解する」
- 「NVIDIAのグレース・ホッパー・スーパー...
- RAGのNLPにおける検索と生成の統一的な革...
- 20/11〜26/11の間におけるコン...
「xTuringに会ってください:たった3行のコードで自分自身の大規模言語モデル(LLM)を作成できるオープンソースツール」
特定のアプリケーションのための大規模な言語モデル(LLM)の実用的な実装は、現在のところ、ほとんどの個人にとって困難です。特定のドメイン向けに高い精度と速度でコンテンツを生成したり、作文スタイルを模倣したりするためには、時間と専門知識が必要です。 Stochasticは、LLMの最適化と高速化に特化した明るいMLエンジニア、ポストドク、およびハーバード大学の卒業生のチームを持っています。彼らはxTuringというオープンソースのソリューションを紹介しており、ユーザーはたった3行のコードで独自のLLMを作成することができます。 自動テキストデリバリー、チャットボット、言語翻訳、コンテンツ制作などのアプリケーションは、これらの概念を活用して新しいアプリケーションを開発・作成しようとする人々の関心の対象です。これらのモデルをトレーニングや微調整することは、時間と費用がかかることがありますが、xTuringを使用すると、LLaMA、GPT-J、GPT-2、または他の手法を使用して、モデルの最適化を簡単かつ迅速に行うことができます。 xTuringの単一GPUまたはマルチGPUトレーニングフレームワークとしての汎用性により、ユーザーは特定のハードウェア構成にモデルを合わせることができます。メモリ効率の高い微調整手法(LoRAなど)をxTuringは使用しており、学習プロセスを高速化し、ハードウェアの費用を最大90%削減します。メモリの使用量を減らすことにより、LoRAはより迅速かつ効果的なモデルトレーニングを容易にします。 xTuringの微調整能力を評価するために、LLaMA 7Bモデルがベンチマークとして使用され、xTuringを他の微調整手法と比較したチームがあります。データセットは52Kの命令で構成され、335GBのCPUメモリと4つのA100 GPUが使用されました。 結果は、DeepSpeed + CPUオフロードを使用して、LLaMA 7Bモデルを1エポックあたり21時間トレーニングした場合、GPUの使用量は33.5GB、CPUの使用量は190GBでした。一方、LoRA + DeepSpeedまたはLoRA + DeepSpeed + CPUオフロードを使用して微調整する場合、メモリ使用量はそれぞれ23.7GBと21.9GBに劇的に減少しました。CPUによって使用されるRAMの量は14.9GBから10.2GBに減少しました。さらに、LoRA + DeepSpeedまたはLoRA + DeepSpeed + CPUオフロードを使用すると、トレーニング時間は1エポックあたり40分から20分に短縮されました。 xTuringを始めるのは簡単です。ツールのユーザーインターフェースは直感的に学習し使用できるように設計されています。ユーザーはマウスクリック数回でモデルを微調整し、xTuringが残りの作業を行います。使いやすさから、xTuringはLLMに初めて取り組む人や経験豊富な人にとっても優れた選択肢です。…
「AI駆動の洞察:LangChainとPineconeを活用したGPT-4」
「質的データと効果的に取り組むことは、プロダクトマネージャーが持つべき最も重要なスキルの一つですデータを収集し、分析し、効率的な方法で伝えることができるようにすることは、...」
「2023年のトップコンピュータビジョンツール/プラットフォーム」
コンピュータビジョンは、デジタル写真やビデオ、その他の視覚的な入力から有用な情報を抽出し、それに応じてアクションを実行したり、推奨を提供したりするためのコンピュータやシステムの能力を可能にします。コンピュータビジョンは、マシンに知覚、観察、理解する能力を与え、人工知能が思考する能力を与えるのと同様の能力を提供します。 人間の視覚は、長い間存在しているため、コンピュータビジョンに比べて優位性があります。生涯のコンテキストを持つことで、人間の視覚は物事を区別し、視聴者からの距離を測定し、物体が動いているかどうかを判断し、画像が正しいかどうかを判断する方法を学びます。 視神経や視覚皮質ではなく、カメラ、データ、アルゴリズムを使用することで、コンピュータビジョンは同様のタスクをはるかに短時間で実行する方法をコンピュータに教えます。製品の検査や生産資産の監視をトレーニングしたシステムは、目に見えない欠陥や問題を見つけながら、1分間に数千もの製品やプロセスを検査できるため、人間よりも迅速に優れたパフォーマンスを発揮します。 エネルギー、公益事業、製造業、自動車産業など、さまざまな業界でコンピュータビジョンが使用されており、市場は今も拡大し続けています。 コンピュータビジョンシステムで利用できるいくつかの典型的なジョブは次のとおりです: オブジェクトの分類。システムは、画像やビデオの中のオブジェクトを事前に定義された見出しの下に分類する前に、視覚データを分析します。例えば、アルゴリズムは画像内のすべてのアイテムの中から犬を識別することができます。 アイテムの識別。システムは、視覚データを分析し、画像やビデオの中の特定のオブジェクトを認識します。例えば、アルゴリズムは画像内の犬の中から特定の犬を選び出すことができます。 オブジェクトの追跡。システムはビデオを分析し、検索条件を満たすオブジェクト(またはオブジェクト)を識別し、そのオブジェクトの進行状況を追跡します。 トップのコンピュータビジョンツール Kili Technologyのビデオ注釈ツール Kili Technologyのビデオ注釈ツールは、ビデオファイルから高品質なデータセットの作成を簡素化し、加速するために設計されています。このツールは、バウンディングボックス、ポリゴン、セグメンテーションなど、さまざまなラベリングツールをサポートしており、正確な注釈を可能にします。高度なトラッキング機能により、直感的なエクスプロアビューでフレームを簡単にナビゲートし、すべてのラベルを確認することができます。 このツールはさまざまなビデオ形式に対応し、人気のあるクラウドストレージプロバイダーとシームレスに統合されるため、既存の機械学習パイプラインとのスムーズな統合が保証されます。Kili Technologyのビデオ注釈ツールは、ラベリングプロセスを最適化し、強力なデータセットを構築するための究極のツールキットです。 OpenCV OpenCVは、機械学習とコンピュータビジョンのためのソフトウェアライブラリです。OpenCVは、コンピュータビジョンアプリケーションのための標準的なインフラストラクチャを提供するために開発され、2,500以上の伝統的なアルゴリズムと最新のアルゴリズムにアクセスできます。 これらのアルゴリズムは、顔の識別、赤目の除去、オブジェクトの識別、オブジェクトの3Dモデルの抽出、動くオブジェクトの追跡、複数のフレームを高解像度の画像に繋げるなど、さまざまなことに使用することができます。 Viso Suite コンピュータビジョンの開発、展開、監視のための完全なプラットフォームであるViso Suiteは、企業が実用的なコンピュータビジョンアプリケーションを作成することを可能にします。ノーコードプラットフォームの基盤となるコンピュータビジョンのための最高のソフトウェアスタックには、CVAT、OpenCV、OpenVINO、TensorFlow、またはPyTorchが含まれています。 画像の注釈、モデルのトレーニング、モデルの管理、ノーコードアプリケーションの開発、デバイスの管理、IoT通信、カスタムダッシュボードなど、Viso Suiteを構成する15のコンポーネントの一部です。ビジネスや政府機関は、産業自動化、視覚検査、リモートモニタリングなどのためのコンピュータビジョンアプリケーションのポートフォリオを作成および管理するために、Viso…
「過小評価されている宝石Pt.1:あなたをプロにする8つのPandasメソッド」
しばらくはChatGPTを忘れましょう私たちの中には、シンプルなPandasの操作を行いたいときに毎回解決策をグーグルで検索することで疲れてしまう人もいます同じことをするための方法は数多く存在するようです...
JuliaでのMS SQL Serverの操作
SQLデータベースは、世界中で最も広く展開されているソフトウェアの一つですこれらは、ビジネスデータ分析から天気予報まで、さまざまなアプリケーションの基盤となっていますいくつかの...
GPBoostを使用した縦断およびパネルデータのための混合効果機械学習(パートIII)
「PythonとRのGPBoostパッケージのデモ:縦断的およびパネルデータのモデル化のための木ブースティングとランダムエフェクトの組み合わせ」
「Transformerモデルの実践的な導入 BERT」
ハンズオンチュートリアルでBERTを探索してください:トランスフォーマーを理解し、プレトレーニングとファインチューニングをマスターし、PythonとHugging Faceを使用して感情分析を実行します
NLP で仕事検索を強化しましょう
最も一般的な求人プラットフォームでは、検索機能はいくつかの入力単語といくつかのフィルタ(場所など)に基づいて求人を絞り込むことで構成されていますこれらの単語は一般的にはドメインや…
「Pymcと統計モデルを記述するための言語の紹介」
「ベイズ推論のほとんどの例がそれが何であるかを誤解している理由についての前回の記事では、ベイズ統計の初心者の間で一般的な誤解を明確にしましたそれは、…」
「勝つための機械学習の履歴書の作り方」
緻密に設計された履歴書は、機械学習の非常に競争力のある分野で雇用の見込みを開き、夢の仕事を確保するための切符になることがあります。この包括的なガイドでは、雇用主を感心させるために機械学習の履歴書を戦略的に最適化するための重要な洞察を提供します。プロの成功を促進し、キャリアの進展を図るための機械学習の履歴書を書く方法を学びましょう。技術的な専門知識を強調し、関連するプロジェクトを提示し、業界の知識を活用するための効果的な戦略をマスターしましょう。 機械学習の履歴書の構造とフォーマット 適切な形式でスキルや経験を提示することは、機械学習の履歴書が際立つために非常に重要です。 構造 プロフェッショナルなヘッダー 簡潔な要約/目的の記述 技術的なスキル 教育 職務経歴 プロジェクト 認定とトレーニング 出版物とプレゼンテーション 受賞と認識 プロの関連性 参考文献 フォーマット 整然としたAI MLの履歴書のための標準的な詳細を考慮してください: フォント フォントサイズ 行間 配置 ファイルの種類 関連するスキルと知識の強調…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.