Learn more about Search Results ML - Page 350

プルリクエストとディスカッションの紹介 🥳

私たちは、Hugging Face Hubでの最新の共同作業機能、プルリクエストとディスカッションのリリースを大いに喜んでお知らせします! プルリクエストとディスカッションは、モデル、データセット、およびスペースのすべてのリポジトリタイプのコミュニティタブの下で今日から利用可能です。コミュニティのメンバーは、ディスカッションとプルリクエストを作成し、参加することができます。これにより、チーム内だけでなく、コミュニティの他のすべての人とも協力が可能になります! これは、Hubで行われた最大のアップデートであり、コミュニティメンバーがそれを使って協力を始めるのを楽しみにしています 🤩。 新しい「コミュニティ」タブは、これまでの倫理的な機械学習の提案とも一致しています。フィードバックとイテレーションは、倫理的な機械学習ソフトウェアの開発において中心的な役割を果たします。私たちは、それをコミュニティのツールセットに持っていることで、ML、コラボレーション、進歩に新しい種類のポジティブなパターンが生まれると本当に信じています。 ディスカッションとプルリクエストの例としては、次のようなものがあります: 倫理的なバイアスの開示を改善するためのモデルカードへの提案を行う。 特定のスペースデモの懸念を引き起こす生成物をユーザーがフラグする。 モデルとデータセットの作成者がコミュニティメンバーと直接ディスカッションできる場を提供する。 他の人がリポジトリを改善できるようにする!例えば、ユーザーはTensorFlowのウェイトを提供したいかもしれません! ディスカッション ディスカッションでは、コミュニティメンバーが質問をしたり回答したり、アイデアや提案をリポジトリの所有者やコミュニティと直接共有したりすることができます。誰でもリポジトリのコミュニティタブでディスカッションを作成したり参加したりできます。 プルリクエスト プルリクエストでは、コミュニティメンバーがウェブサイトから直接プルリクエストを開いたりコメントしたりマージしたり閉じたりすることができます。プルリクエストを開く最も簡単な方法は、「ファイルとバージョン」タブの「共同作業」ボタンを使用することです。これにより、単一のファイルの貢献が非常に簡単に行えます。 裏側では、プルリクエストではフォークやブランチを使用せず、ソースリポジトリに直接保存されるカスタムの「ブランチ」であるrefsを使用しています。このアプローチにより、モデル/データセットの新バージョンごとにフォークを作成する必要がなくなります。 他のGitホストとの違いは何ですか 大まかに言うと、私たちは他のGitホスト(GitHubなど)のPRやIssueのよりシンプルなバージョンを構築することを目指しています: フォークは関与しません:投稿者はソースリポジトリに直接特別なrefブランチにプッシュします IssueとPRの明確な区別はありません:本質的に同じなので、同じリストに表示されます MLに最適化されています(つまり、モデル/データセット/スペースのリポジトリ)で、任意のリポジトリではありません 次は何ですか もちろん、これは始まりに過ぎません。私たちはコミュニティのフィードバックを聞きながら、将来的に新機能を追加し、コミュニティタブを改善していく予定です。フィードバックがあれば、こちらのディスカッションに参加することができます。今日が初めてディスカッションに参加し、プルリクエストを開く最高のタイミングです!…

GraphcoreとHugging Faceが、IPU対応の新しいトランスフォーマーのラインアップを発表

GraphcoreとHugging Faceは、Hugging Face Optimumにおいて利用可能な機械学習のモダリティとタスクの範囲を大幅に拡張しました。Hugging Face Optimumは、Transformersのパフォーマンス最適化のためのオープンソースライブラリです。開発者は、GraphcoreのIPUで最高のパフォーマンスを提供するように最適化された幅広いHugging Face Transformerモデルに簡単にアクセスできるようになりました。 Optimum Graphcoreの発売後間もなく提供されたBERT Transformerモデルを含む、開発者は現在、自然言語処理(NLP)、音声、コンピュータビジョンをカバーする10のモデルにアクセスできます。これらのモデルには、IPUの設定ファイルと、事前学習および微調整済みのモデルの重みを使用するための準備が整っています。 新しいOptimumモデル コンピュータビジョン ViT(Vision Transformer)は、主要なコンポーネントとしてTransformerメカニズムを使用した画像認識の画期的な手法です。画像がViTに入力されると、言語システムで単語が処理されるのと同様に、画像は小さなパッチに分割されます。各パッチはTransformer(埋め込み)によってエンコードされ、個別に処理することができます。 NLP GPT-2(Generative Pre-trained Transformer 2)は、非常に大規模な英語のコーパスで自己教師付きの形式で事前学習されたテキスト生成Transformerモデルです。これは、テキストのラベリングを行わずに、公開されているデータを多く使用することができるため、自動的なプロセスでテキストから入力とラベルを生成することによって事前学習されました。より具体的には、文の次の単語を推測して文を生成するようにトレーニングされています。 RoBERTa(Robustly optimized BERT approach)は、自己教師付きの形式で大規模な英語のコーパスで事前学習されたTransformerモデルです(GPT-2と同様)。より具体的には、RoBERTaはマスクされた言語モデリング(MLM)の目的で事前学習されています。文を取り、モデルは入力の15%の単語をランダムにマスクし、全体のマスクされた文をモデルを通して実行し、マスクされた単語を予測する必要があります。RoBERTaはマスクされた言語モデリングに使用することができますが、主に下流タスクで微調整することを意図しています。…

スペースインベーダーとの深層Q学習

ハギングフェイスとのディープ強化学習クラスのユニット3 ⚠️ この記事の新しい更新版はこちらから利用できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 ⚠️ この記事の新しい更新版はこちらから利用できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 前のユニットでは、最初の強化学習アルゴリズムであるQ-Learningを学び、それをゼロから実装し、FrozenLake-v1 ☃️とTaxi-v3 🚕の2つの環境でトレーニングしました。 このシンプルなアルゴリズムで優れた結果を得ました。ただし、これらの環境は比較的単純であり、状態空間が離散的で小さかったため(FrozenLake-v1では14の異なる状態、Taxi-v3では500の状態)。 しかし、大きな状態空間の環境では、Qテーブルの作成と更新が効率的でなくなる可能性があることを後で見ていきます。 今日は、最初のディープ強化学習エージェントであるDeep Q-Learningを学びます。Qテーブルの代わりに、Deep Q-Learningは、状態を受け取り、その状態に基づいて各アクションのQ値を近似するニューラルネットワークを使用します。 そして、RL-Zooを使用して、Space Invadersやその他のAtari環境をプレイするためにトレーニングします。RL-Zooは、トレーニング、エージェントの評価、ハイパーパラメータの調整、結果のプロット、ビデオの記録など、RLのためのトレーニングフレームワークであるStable-Baselinesを使用しています。 では、始めましょう! 🚀 このユニットを理解するためには、まずQ-Learningを理解する必要があります。…

注釈付き拡散モデル

このブログ記事では、Denoising Diffusion Probabilistic Models(DDPM、拡散モデル、スコアベースの生成モデル、または単にオートエンコーダーとも呼ばれる)について詳しく見ていきます。これらのモデルは、(非)条件付きの画像/音声/ビデオの生成において、驚くべき結果が得られています。具体的な例としては、OpenAIのGLIDEやDALL-E 2、University of HeidelbergのLatent Diffusion、Google BrainのImageGenなどがあります。 この記事では、(Hoら、2020)による元のDDPMの論文を取り上げ、Phil Wangの実装をベースにPyTorchでステップバイステップで実装します。なお、このアイデアは実際には(Sohl-Dicksteinら、2015)で既に導入されていました。ただし、改善が行われるまでには(Stanford大学のSongら、2019)を経て、Google BrainのHoら、2020)が独自にアプローチを改良しました。 拡散モデルにはいくつかの視点がありますので、ここでは離散時間(潜在変数モデル)の視点を採用していますが、他の視点もチェックしてください。 さあ、始めましょう! from IPython.display import Image Image(filename='assets/78_annotated-diffusion/ddpm_paper.png') まず必要なライブラリをインストールしてインポートします(PyTorchがインストールされていることを前提としています)。 !pip install -q -U…

機械学習インサイトディレクター【パート3:ファイナンスエディション】

もしMLソリューションをより速く構築したい場合は、hf.co/supportを今すぐご覧ください! 👋 MLインサイトシリーズディレクター、ファイナンスエディションへようこそ!以前のエディションを見逃した場合は、以下で見つけることができます: Machine Learning Insightsディレクター[パート1] Machine Learning Insightsディレクター[パート2:SaaSエディション] ファイナンスの機械学習ディレクターは、レガシーシステムの航海、解釈可能なモデルの展開、および顧客の信頼の維持といった独自の課題に直面しています。また、政府の監督が多く、高度に規制されています。これらの課題には、効果的に導くために深い業界知識と技術的な専門知識が必要です。以下のアメリカン・バンク、カナダ王立銀行、ムーディーズ・アナリティクス、および元ブルームバーグAIの研究科学者からの専門家は、機械学習×ファイナンスセクター内のユニークな知見を提供しています。 ギリシャのナショナルジュニアテニスチャンピオン、100以上の特許を取得した出版者、世界最古のポロクラブ(カルカッタポロクラブ)で定期的にプレーしていたサイクルポロプレーヤーなど、彼らはすべて金融MLの専門家に転身しました。 🚀 トップな金融MLマーベリックからの洞察をご紹介します: 免責事項:すべての意見は個人のものであり、過去または現在の雇用主からのものではありません。 イオアニス・バカギアニス – RBCの機械学習マーケティングサイエンスディレクター バックグラウンド:スケーラブルな、本番用の最先端の機械学習ソリューションを提供する経験豊富な情熱的な機械学習エキスパート。イオアニスはまた、Bak Up Podcastのホストでもあり、AIを通じて世界に影響を与えることを目指しています。 おもしろい事実:イオアニスはギリシャのナショナルジュニアテニスチャンピオンでした。🏆 RBC:世界的な組織は、キャピタルマーケット、銀行および金融において革新的かつ信頼できるパートナーとしてRBCキャピタルマーケットを見ています。 1. 機械学習が金融にどのようなポジティブな影響をもたらしましたか?…

IntelとHugging Faceがパートナーシップを結び、機械学習ハードウェアアクセラレーションを民主化する

Hugging Faceのミッションは、優れた機械学習を民主化し、産業や社会に対するそのポジティブな影響を最大化することです。私たちはTransformerモデルの進歩だけでなく、その採用を簡素化するためにも努力しています。 本日、Intelが正式に私たちのハードウェアパートナープログラムに参加したことをお知らせいたします。Optimumオープンソースライブラリのおかげで、IntelとHugging FaceはTransformerをトレーニング、微調整、予測するための最新のハードウェアアクセラレーションを共同で開発します。 Transformerモデルはますます大きく複雑になっており、検索やチャットボットなどのレイテンシーに敏感なアプリケーションにおいて、生産上の課題を引き起こすことがあります。残念ながら、レイテンシーの最適化は機械学習(ML)の専門家にとって長年の難問でした。基盤となるフレームワークやハードウェアプラットフォームの深い知識があっても、どのツマミや機能を活用するかを見極めるために多くの試行錯誤が必要です。 Intelは、Intel Xeon Scalable CPUプラットフォームと幅広いハードウェア最適化AIソフトウェアツール、フレームワーク、ライブラリを備えた、AIの加速化に完全な基盤を提供します。そのため、Hugging FaceとIntelが力を合わせて、Intelプラットフォーム上での最高のパフォーマンス、スケーラビリティ、生産性を実現するための強力なモデル最適化ツールの開発に取り組むことは理にかなっています。 「Intel XeonハードウェアとIntel AIソフトウェアの最新のイノベーションをTransformersコミュニティにもたらすため、オープンソースの統合と統合された開発者体験を通じてHugging Faceと協力することにワクワクしています。」と、Intel副社長兼AIおよび分析のゼネラルマネージャーであるWei Li氏は述べています。 最近の数ヶ月間、IntelとHugging FaceはTransformerワークロードのスケーリングに取り組んできました。推論(パート1、パート2)の詳細なチューニングガイドとベンチマークを公開し、最新のIntel Xeon Ice Lake CPU上でDistilBERTの単桁ミリ秒レイテンシーを実現しました。トレーニングの側では、GPUよりも40%優れた価格性能を提供するHabana Gaudiアクセラレータのサポートを追加しました。 次の自然なステップは、この作業を拡大してMLコミュニティと共有することでした。それがOptimum Intelオープンソースライブラリの登場です!それをより詳しく見てみましょう。…

埋め込みを使った始め方

ノートブックコンパニオンを使用したこのチュートリアルをチェックしてください: 埋め込みの理解 埋め込みは、テキスト、ドキュメント、画像、音声などの情報の数値表現です。この表現は、埋め込まれているものの意味を捉え、多くの産業アプリケーションに対して堅牢です。 テキスト「投票の主な利点は何ですか?」に対する埋め込みは、たとえば、384個の数値のリスト(例:[0.84、0.42、…、0.02])でベクトル空間で表現されることがあります。このリストは意味を捉えているため、異なる埋め込み間の距離を計算して、2つの文の意味がどれだけ一致するかを判断するなど、興味深いことができます。 埋め込みはテキストに限定されません!画像の埋め込み(たとえば、384個の数値のリスト)を作成し、テキストの埋め込みと比較して文が画像を説明しているかどうかを判断することもできます。この概念は、画像検索、分類、説明などの強力なシステムに適用されています! 埋め込みはどのように生成されるのでしょうか?オープンソースのライブラリであるSentence Transformersを使用すると、画像やテキストから最先端の埋め込みを無料で作成することができます。このブログでは、このライブラリを使用した例を紹介しています。 埋め込みの用途は何ですか? 「[…] このMLマルチツール(埋め込み)を理解すると、検索エンジンからレコメンデーションシステム、チャットボットなど、さまざまなものを構築できます。データサイエンティストやMLの専門家である必要はありませんし、大規模なラベル付けされたデータセットも必要ありません。」- デール・マルコウィッツ、Google Cloud。 情報(文、ドキュメント、画像)が埋め込まれると、創造性が発揮されます。いくつかの興味深い産業アプリケーションでは、埋め込みが使用されます。たとえば、Google検索ではテキストとテキスト、テキストと画像をマッチングさせるために埋め込みを使用しています。Snapchatでは、「ユーザーに適切な広告を適切なタイミングで提供する」ために埋め込みを使用しています。Meta(Facebook)では、ソーシャルサーチに埋め込みを使用しています。 埋め込みから知識を得る前に、これらの企業は情報を埋め込む必要がありました。埋め込まれたデータセットを使用することで、アルゴリズムは素早く検索、ソート、グループ化などを行うことができます。ただし、これは費用がかかり、技術的にも複雑な場合があります。この投稿では、シンプルなオープンソースのツールを使用して、データセットを埋め込み、分析する方法を紹介します。 埋め込みの始め方 小規模なよく寄せられる質問(FAQ)エンジンを作成します。ユーザーからのクエリを受け取り、最も類似したFAQを特定します。米国社会保障メディケアFAQを使用します。 しかし、まず、データセットを埋め込む必要があります(他のテキストでは、エンコードと埋め込みの用語を交換可能に使用します)。Hugging FaceのInference APIを使用すると、簡単なPOSTコールを使用してデータセットを埋め込むことができます。 質問の意味を埋め込みが捉えるため、異なる埋め込みを比較してどれだけ異なるか、または類似しているかを確認することができます。これにより、クエリに最も類似した埋め込みを取得し、最も類似したFAQを見つけることができます。このメカニズムの詳細な説明については、セマンティックサーチのチュートリアルをご覧ください。 要するに、以下の手順を実行します: Inference APIを使用してメディケアのFAQを埋め込む。 埋め込まれた質問を無料ホスティングするためにHubにアップロードする。…

ポリシーグラディエント(Policy Gradient)によるPyTorchの実装

Deep Reinforcement Learning Classのユニット5、Hugging Faceと共に 🤗 ⚠️ この記事の新しい更新版はこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learning Classの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learning Classの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 前のユニットでは、Deep Q-Learningについて学びました。この価値ベースのDeep…

Twitterでの感情分析を始める

センチメント分析は、テキストデータをその極性(ポジティブ、ネガティブ、ニュートラルなど)に基づいて自動的に分類するプロセスです。企業は、ツイートのセンチメント分析を活用して、顧客が自社製品やサービスについてどのように話しているかを把握し、ビジネスの意思決定に洞察を得ること、製品の問題や潜在的なPR危機を早期に特定することができます。 このガイドでは、Twitterでのセンチメント分析を始めるために必要なすべてをカバーします。コーダーと非コーダーの両方向けに、ステップバイステップのプロセスを共有します。コーダーの場合、Inference APIを使用してツイートのセンチメント分析を簡単なコード数行でスケールして行う方法を学びます。コーディング方法を知らない場合でも心配ありません!Zapierを使用してセンチメント分析を行う方法もカバーします。Zapierはツイートを収集し、Inference APIで分析し、最終的に結果をGoogle Sheetsに送信するためのノーコードツールです⚡️ 一緒に読んで興味があるセクションにジャンプしてください🌟: センチメント分析とは何ですか? コーディングを使用したTwitterセンチメント分析の方法は? コーディングを使用せずにTwitterセンチメント分析を行う方法は? 準備ができたら、楽しんでください!🤗 センチメント分析とは何ですか? センチメント分析は、機械学習を使用して人々が特定のトピックについてどのように話しているかを自動的に識別する方法です。センチメント分析の最も一般的な用途は、テキストデータの極性(つまり、ツイートや製品レビュー、サポートチケットが何かについてポジティブ、ネガティブ、またはニュートラルに話しているかを自動的に識別すること)の検出です。 例として、@Salesforceをメンションしたいくつかのツイートをチェックして、センチメント分析モデルによってどのようにタグ付けされるかを確認してみましょう: “The more I use @salesforce the more I dislike it. It’s…

BLOOMトレーニングの技術背後

近年、ますます大規模な言語モデルの訓練が一般的になってきました。これらのモデルがさらなる研究のために公開されていない問題は頻繁に議論されますが、そのようなモデルを訓練するための技術やエンジニアリングについての隠された知識は滅多に注目されません。本記事では、1760億パラメータの言語モデルBLOOMを例に、そのようなモデルの訓練の裏側にあるハードウェアとソフトウェアの技術とエンジニアリングについて、いくつかの光を当てることを目指しています。 しかし、まず、この素晴らしい1760億パラメータモデルの訓練を可能にするために貢献してくれた企業や主要な人物やグループに感謝したいと思います。 その後、ハードウェアのセットアップと主要な技術的な構成要素について説明します。 以下はプロジェクトの要約です: 人々 このプロジェクトは、Hugging Faceの共同創設者でありCSOのThomas Wolf氏が考案しました。彼は巨大な企業と競争し、単なる夢だったものを実現し、最終的な結果をすべての人にアクセス可能にすることで、最も多くの人々にとっては夢であったものを実現しました。 この記事では、モデルの訓練のエンジニアリング側に特化しています。BLOOMの背後にある技術の最も重要な部分は、私たちにコーディングと訓練の助けを提供してくれた専門家の人々と企業です。 感謝すべき6つの主要なグループがあります: HuggingFaceのBigScienceチームは、数人の専任の従業員を捧げ、訓練を始めから終わりまで行うための方法を見つけるために、Jean Zayの計算機を超えるすべてのインフラストラクチャを提供しました。 MicrosoftのDeepSpeedチームは、DeepSpeedを開発し、後にMegatron-LMと統合しました。彼らの開発者たちはプロジェクトのニーズに多くの時間を費やし、訓練前後に素晴らしい実践的なアドバイスを提供しました。 NVIDIAのMegatron-LMチームは、Megatron-LMを開発し、私たちの多くの質問に親切に答えてくれ、一流の実践的なアドバイスを提供しました。 ジャン・ゼイのスーパーコンピュータを管理しているIDRIS / GENCIチームは、計算リソースをプロジェクトに寄付し、優れたシステム管理のサポートを提供しました。 PyTorchチームは、このプロジェクトのために基礎となる非常に強力なフレームワークを作成し、訓練の準備中に私たちをサポートし、複数のバグを修正し、PyTorchコンポーネントの使いやすさを向上させました。 BigScience Engineeringワーキンググループのボランティア プロジェクトのエンジニアリング側に貢献してくれたすべての素晴らしい人々を全て挙げることは非常に困難なので、Hugging Face以外のいくつかの主要な人物を挙げます。彼らはこのプロジェクトのエンジニアリングの基盤となりました。 Olatunji Ruwase、Deepak…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us