Learn more about Search Results ボード - Page 348

AIのマスタリング:プロンプトエンジニアリングソリューションの力

私と一緒にAIプロンプトエンジニアリングの素晴らしさを発見しましょう!ユーモアのある効果的なプロンプトの制作によって、AIモデルのフルポテンシャルを引き出すことができます

Python におけるカテゴリカル変数の扱い方ガイド

データサイエンスまたは機械学習プロジェクトでのカテゴリ変数の扱いは容易な仕事ではありませんこの種の作業には、アプリケーションの分野の深い知識と幅広い理解が必要です...

データサイエンティストとして成功するために必要なソフトスキル

データサイエンティストとしてのキャリアを構築する際には、ハードスキルにフォーカスすることが簡単です非線形カーネルを持つSVMのような新しいMLアルゴリズムを学ぶことや、新しいソフトウェアを学びたいと思うかもしれません

プレイヤーの離脱を予測する方法、ChatGPTの助けを借りる

ゲームの世界では、企業はプレイヤーを引きつけるだけでなく、特にゲーム内のマイクロトランザクションに頼る無料のゲームでは、できるだけ長く彼らを保持することを目指していますこれらの...

Amazon SageMaker 上で MPT-7B を微調整する

毎週新しい大規模言語モデル(LLM)が発表され、それぞれが前任者を打ち負かして評価のトップを狙っています最新のモデルの1つはMPT-7Bです

Boto3 vs AWS Wrangler PythonによるS3操作の簡素化

このチュートリアルでは、boto3とawswranglerの2つの強力なライブラリを探索し、比較することで、PythonによるAWS S3開発の世界に深く入り込んでいきます実際、この記事では以下の内容をカバーします…

ソフトウェア開発活動のための大規模シーケンスモデル

Google の研究科学者である Petros Maniatis と Daniel Tarlow が投稿しました。 ソフトウェアは一度に作られるわけではありません。編集、ユニットテストの実行、ビルドエラーの修正、コードレビューのアドレス、編集、リンターの合意、そしてより多くのエラーの修正など、少しずつ改善されていきます。ついには、コードリポジトリにマージするに十分な良い状態になります。ソフトウェアエンジニアリングは孤立したプロセスではなく、人間の開発者、コードレビュワー、バグ報告者、ソフトウェアアーキテクト、コンパイラ、ユニットテスト、リンター、静的解析ツールなどのツールの対話です。 今日、私たちは DIDACT(​​Dynamic Integrated Developer ACTivity)を説明します。これは、ソフトウェア開発の大規模な機械学習(ML)モデルをトレーニングするための方法論です。 DIDACT の新規性は、完成したコードの磨き上げられた最終状態だけでなく、ソフトウェア開発のプロセス自体をトレーニングデータのソースとして使用する点にあります。開発者が作業を行う際に見るコンテキストと、それに対するアクションを組み合わせて、モデルはソフトウェア開発のダイナミクスについて学び、開発者が時間を費やす方法により合わせることができます。私たちは、Google のソフトウェア開発の計装を活用して、開発者活動データの量と多様性を以前の作品を超えて拡大しました。結果は、プロのソフトウェア開発者にとっての有用性と、一般的なソフトウェア開発スキルを ML モデルに注入する可能性という2つの側面で非常に有望です。 DIDACT は、編集、デバッグ、修復、およびコードレビューを含む開発活動をトレーニングするマルチタスクモデルです。 私たちは DIDACT Comment…

人間の注意力を予測するモデルを通じて、心地よいユーザーエクスペリエンスを実現する

Google Researchのシニアリサーチサイエンティスト、Junfeng He氏とスタッフリサーチサイエンティスト、Kai Kohlhoff氏による記事です。 人間は、驚くほど多くの情報を取り入れる能力を持っています(網膜に入る情報は秒間約10 10ビット)。そして、タスクに関連し、興味深い領域に選択的に注目し、さらに処理する能力を持っています(例:記憶、理解、行動)。人間の注意(その結果として得られるものはしばしば注目モデルと呼ばれます)をモデル化することは、神経科学、心理学、人間コンピュータインタラクション(HCI)、コンピュータビジョンの分野で興味を持たれてきました。どの領域でも、どの領域でも、注目が集まる可能性が高い領域を予測する能力には、グラフィックス、写真、画像圧縮および処理、視覚品質の測定など、多数の重要な応用があります。 以前、機械学習とスマートフォンベースの注視推定を使用して、以前は1台あたり3万ドルにも及ぶ専門的なハードウェアが必要だった視線移動の研究を加速する可能性について説明しました。関連する研究には、「Look to Speak」というアクセシビリティニーズ(ALSのある人など)を持つユーザーが目でコミュニケーションするのを支援するものと、「Differentially private heatmaps」という、ユーザーのプライバシーを保護しながら注目のようなヒートマップを計算する技術が最近発表されました。 このブログでは、私たちはCVPR 2022からの1つの論文と、CVPR 2023での採用が決定したもう1つの論文、「Deep Saliency Prior for Reducing Visual Distraction」と「Learning from Unique Perspectives: User-aware…

デジタルルネッサンス:NVIDIAのNeuralangelo研究が3Dシーンを再構築

NVIDIA Researchによる新しいAIモデル、Neuralangeloは、ニューラルネットワークを使用して3D再構築を行い、2Dビデオクリップを詳細な3D構造に変換し、建物、彫刻、およびその他の現実世界のオブジェクトのリアルなバーチャルレプリカを生成します。 ミケランジェロが大理石のブロックから驚くべきリアルなビジョンを彫刻したように、Neuralangeloは複雑なディテールと質感を持つ3D構造を生成します。クリエイティブなプロフェッショナルは、これらの3Dオブジェクトをデザインアプリケーションにインポートし、アート、ビデオゲーム開発、ロボット工学、および産業用デジタルツインに使用するためにさらに編集することができます。 Neuralangeloは、屋根の瓦、ガラスの板、滑らかな大理石などの複雑な素材の質感を、従来の手法を大幅に上回る精度で2Dビデオから3Dアセットに変換することができます。この高い信頼性により、開発者やクリエイティブなプロフェッショナルは、スマートフォンでキャプチャされた映像を使用してプロジェクトに使用できる仮想オブジェクトを迅速に作成できます。 「Neuralangeloが提供する3D再構築機能は、クリエイターにとって大きな利益になります。現実世界をデジタル世界に再現するのを支援することで、開発者は小さな像や巨大な建築物などの詳細なオブジェクトを仮想環境にインポートできるようになります。」と、研究のシニアディレクターであり、論文の共著者でもあるMing-Yu Liu氏は述べています。 デモでは、NVIDIAの研究者が、ミケランジェロのダビデ像やフラットベッドトラックなどといったアイコニックなオブジェクトを再現する方法を紹介しました。Neuralangeloは、建物の内部および外部も再構築することができ、NVIDIAのベイエリアキャンパスの公園の詳細な3Dモデルで実証されました。 ニューラルレンダリングモデルが3Dで見る 3Dシーンを再構築するための以前のAIモデルは、繰り返しのテクスチャパターン、同質的な色、および強い色の変化を正確に捉えることができませんでした。Neuralangeloは、これらの微細なディテールを捉えるために、NVIDIA Instant NeRFの背後にある技術であるインスタントニューラルグラフィックスプリミティブを採用しています。 さまざまな角度から撮影されたオブジェクトまたはシーンの2Dビデオを使用して、モデルは異なる視点を捉えたいくつかのフレームを選択します。これは、アーティストが対象を多角的に考慮して深度、サイズ、および形状を把握するのと同じです。 フレームごとのカメラ位置が決定されたら、NeuralangeloのAIはシーンの大まかな3D表現を作成します。これは、彫刻家が主題の形を彫刻し始めるのと同じです。 次に、モデルはレンダリングを最適化してディテールをシャープにします。これは、彫刻家が石を注意深く削って布の質感や人物の形を再現するのと同じです。 最終的な結果は、仮想リアリティアプリケーション、デジタルツイン、またはロボット工学の開発に使用できる3Dオブジェクトまたは大規模なシーンです。 CVRPでNVIDIA Researchを見つける、6月18日〜22日 Neuralangeloは、6月18日から22日にバンクーバーで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVRP)で発表されるNVIDIA Researchの約30のプロジェクトの1つです。これらの論文は、ポーズ推定、3D再構築、およびビデオ生成などのトピックをカバーしています。 これらのプロジェクトの1つであるDiffCollageは、長いランドスケープ方向、360度パノラマ、およびループモーション画像を含む大規模なコンテンツを作成する拡散法です。標準的なアスペクト比の画像のトレーニングデータセットをフィードすると、DiffCollageはこれらの小さな画像をコラージュのピースのように扱い、より大きなビジュアルのセクションとして扱います。これにより、拡散モデルは、同じスケールの画像のトレーニングを必要とせずに、継ぎ目のない大規模なコンテンツを生成できるようになります。 この技術は、テキストプロンプトをビデオシーケンスに変換することもできます。これは、人間の動きを捉える事前訓練された拡散モデルを使用して実証されました。 NVIDIA Researchについてもっと学ぶ。

新時代の幕開け:「エイジ オブ エンパイア」シリーズがGeForce NOWに参加、6月に20タイトルがリリース予定

暑い太陽と長い日々の季節がやってきました。そんな時は、6月にGeForce NOWに参加する20のゲームで、この夏は家の中にいましょう。また、プールで、おばあちゃんの家や車の中など、どこでもストリーミングできます。どちらの方法でも、GeForce NOWが対応します。 次のXboxゲームとして、Age of EmpiresシリーズのタイトルがGeForce NOWに登場します。GeForce NOWライブラリの1,600以上のゲームの中から、この夏たくさん楽しむことができます。 帝国を拡大する 石器時代からクラウドまで。 NVIDIAは先月、Microsoftとの協力関係の一環として、最初のXboxゲームをクラウドにリリースしました。今度は、Ensemble StudiosのAge of Empiresシリーズのアクションゲームをクラウドに取り込む最初の人になりました。 1997年の最初のリリース以来、Age of Empiresは、最も長く続くリアルタイムストラテジーシリーズの1つとして確立されています。この高評価のRTSシリーズは、プレイヤーが拡大して繁栄する文明を目指して、帝国全体を制御することを目的としています。 フランチャイズの最新のSteamバージョン4つが、GeForce NOWライブラリに後日追加されます。それぞれのタイトルは、Age of Empires: Definitive Edition、Age of…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us