Learn more about Search Results TensorFlow - Page 33
- You may be interested
- ジョンズ・ホプキンス大学とUCサンタクル...
- 複雑な生成型AIユースケースにおいて、Hug...
- 「Amazon SageMakerでのRayを使用した効果...
- エネルは、Amazon SageMakerを使用して大...
- 「蒸留されたアイデンティティの傾向最適...
- バージニア工科大学とマイクロソフトの研...
- 次の1時間の雨を予測する
- 『ODSC Westに参加するトップディープラー...
- 「PythonのPandasライブラリを使用した非...
- サリー大学の研究者たちは、機械学習にお...
- ChatGPTを使ってどのように簡単に何でも学...
- 「将来的にAIが医療請求の補完をどのよう...
- XGBoost ディープラーニングがグラディエ...
- 「TidyBotでの掃除」
- Google DeepMind(グーグルディープマイン...
ハギングフェイスにおけるコンピュータビジョンの状況 🤗
弊社の自慢は、コミュニティとともに人工知能の分野を民主化することです。その使命の一環として、私たちは過去1年間でコンピュータビジョンに注力し始めました。🤗 Transformersにビジョントランスフォーマー(ViT)を含めるというPRから始まったこの取り組みは、現在では8つの主要なビジョンタスク、3000以上のモデル、およびHugging Face Hub上の100以上のデータセットに成長しました。 ViTがHubに参加して以来、多くのエキサイティングな出来事がありました。このブログ記事では、コンピュータビジョンの持続的な進歩をサポートするために何が起こったのか、そして今後何がやってくるのかをまとめます。 以下は、カバーする内容のリストです: サポートされているビジョンタスクとパイプライン 独自のビジョンモデルのトレーニング timmとの統合 Diffusers サードパーティーライブラリのサポート デプロイメント その他多数! コミュニティの支援:一つずつのタスクを可能にする 👁 Hugging Face Hubは、次の単語予測、マスクの埋め込み、トークン分類、シーケンス分類など、さまざまなタスクのために10万以上のパブリックモデルを収容しています。現在、我々は8つの主要なビジョンタスクをサポートし、多くのモデルチェックポイントを提供しています: 画像分類 画像セグメンテーション (ゼロショット)オブジェクト検出 ビデオ分類 奥行き推定 画像から画像への合成…
Hugging FaceとFlowerを使用したフェデレーテッドラーニング
このチュートリアルでは、Hugging Faceを使用して、Flowerを介して複数のクライアント上で言語モデルのトレーニングをフェデレートする方法を紹介します。具体的には、IMDBの評価データセットを使用して、事前トレーニングされたTransformerモデル(distilBERT)をシーケンス分類のために微調整します。最終的な目標は、映画の評価がポジティブかネガティブかを検出することです。 ノートブックはこちらでご利用いただけますが、複数のクライアントで実行する代わりに、Google Colab内でフェデレーテッド環境をエミュレートするためにFlowerのシミュレーション機能(flwr['simulation'])を使用します(これはまた、start_serverを呼び出す代わりにstart_simulationを呼び出す必要があり、その他の変更が必要です)。 依存関係 このチュートリアルに従うためには、以下のパッケージをインストールする必要があります:datasets、evaluate、flwr、torch、およびtransformers。これはpipを使用して行うことができます: pip install datasets evaluate flwr torch transformers 標準的なHugging Faceのワークフロー データの処理 IMDBデータセットを取得するために、Hugging Faceのdatasetsライブラリを使用します。その後、データをトークン化し、PyTorchのデータローダーを作成する必要があります。これはすべてload_data関数で行われます: import random import torch from datasets…
🐶セーフテンソルは、本当に安全であり、デフォルトの選択肢として採用されました
Hugging Faceは、EleutherAIとStability AIとの緊密な協力のもと、safetensorsライブラリの外部セキュリティ監査を依頼しました。その結果、これらの組織はすべてライブラリを保存モデルのデフォルト形式にするために進むことができます。 Trail of Bitsによって実施されたセキュリティ監査の詳細な結果は、こちらでご覧いただけます: レポート。 以下のブログ投稿では、このライブラリの起源、この監査結果の重要性、および次のステップについて説明します。 safetensorsとは何ですか? 🐶 safetensorsは、最も一般的なフレームワーク(PyTorch、TensorFlow、JAX、PaddlePaddle、NumPyなど)でテンソルを保存およびロードするためのライブラリです。 具体的な説明のために、PyTorchを使用します。 import torch from safetensors.torch import load_file, save_file weights = {"embeddings": torch.zeros((10, 100))}…
Hugging FaceとAMDは、CPUおよびGPUプラットフォーム向けの最先端モデルの高速化に関するパートナーシップを結んでいます
言語モデル、大規模な言語モデル、または基盤モデル、トランスフォーマーは、事前学習、微調整、および推論において大量の計算を必要とします。Hugging Faceは、開発者や組織が最大のパフォーマンスを得るために、ハードウェア企業と協力して、各チップのアクセラレーション機能を活用してきました。 本日、私たちはAMDが正式に私たちのハードウェアパートナープログラムに参加したことをお知らせいたします。私たちのCEOであるClement Delangueが、サンフランシスコで行われたAMDのデータセンターおよびAIテクノロジープレミアで基調講演を行い、このエキサイティングな新しい協力関係を発表しました。 AMDとHugging Faceは、AMDのCPUおよびGPU上で最先端のトランスフォーマーパフォーマンスを提供するために協力しています。このパートナーシップは、Hugging Faceコミュニティ全体にとって非常に良いニュースであり、近々、最新のAMDプラットフォームをトレーニングおよび推論に活用することができるようになります。 長年にわたり、ディープラーニングハードウェアの選択肢は限られており、価格と供給は懸念事項となっています。この新しいパートナーシップは、競争に対抗するだけでなく、市場の動向を緩和するのに役立ちます。さらに、新しいコストパフォーマンスの基準を設定することも期待されます。 サポートされるハードウェアプラットフォーム GPU側では、AMDとHugging Faceはまず、エンタープライズグレードのInstinct MI2xxおよびMI3xxファミリー、次に、カスタマーグレードのRadeon Navi3xファミリーで協力します。AMDの最近のテストでは、MI250が直接競合他社よりもBERT-Largeを1.2倍、GPT2-Largeを1.4倍高速にトレーニングすることを報告しています。 CPU側では、両社はクライアントRyzenおよびサーバーEPYC CPUの推論の最適化に取り組みます。いくつかの以前の投稿で議論したように、CPUはトランスフォーマーの推論において優れたオプションになり得ます。特に、量子化などのモデル圧縮技術と組み合わせた場合です。 最後に、この協力関係には、低い電力要件で驚異的なパフォーマンスを発揮するAlveo V70 AIアクセラレータも含まれます。 サポートされるモデルアーキテクチャとフレームワーク 私たちは、自然言語処理、コンピュータビジョン、音声などの最先端のトランスフォーマーアーキテクチャ(BERT、DistilBERT、ROBERTA、Vision Transformer、CLIP、Wav2Vec2など)をサポートする予定です。もちろん、生成型AIモデル(GPT2、GPT-NeoX、T5、OPT、LLaMAなど)、私たち自身のBLOOMおよびStarCoderモデルも利用可能です。最後に、ResNetやResNextのようなより伝統的なコンピュータビジョンモデル、そして深層学習の推薦モデルにも初めて対応します。 これらのモデルをPyTorch、TensorFlow、およびONNX Runtime向けに上記のプラットフォームでテストおよび検証するために最善を尽くします。すべてのモデルが、すべてのフレームワークまたはすべてのハードウェアプラットフォームでトレーニングおよび推論に利用可能であるわけではないことを覚えておいてください。 今後の展望…
iPhone、iPad、およびMacでのCore MLによる高速で安定した拡散
先週、WWDC’23(Apple Worldwide Developers Conference)が開催されました。キーノート中のVision Proの発表に焦点が当てられましたが、それだけではありません。毎年のように、WWDC週はAppleのオペレーティングシステムとフレームワークの新機能について深く掘り下げる200以上の技術セッションが詰まっています。今年は特に、圧縮と最適化のためのCore MLの変更に興奮しています。これらの変更により、Stable Diffusionなどのモデルの実行が高速化され、メモリ使用量も少なくなります!一例として、12月にiPhone 13で実行したテストと現在の6ビットパレット化を使用した速度の比較を考えてみましょう: 12月のiPhoneでのStable Diffusionと現在の6ビットパレット化 目次 新しいCore MLの最適化 量子化および最適化されたStable Diffusionモデルの使用 カスタムモデルの変換と最適化 6ビット未満の使用 結論 新しいCore MLの最適化 Core MLは、Appleのデバイス内で効率的に機械学習モデルを実行するための成熟したフレームワークであり、CPU、GPU、およびMLタスクに特化したニューラルエンジンなど、Appleデバイスのすべてのコンピューティングハードウェアを活用します。デバイス上での実行は、Stable Diffusionや大規模な言語モデルの人気によって引き起こされた非常に興味深い時期を迎えています。多くの人々がこれらのモデルをさまざまな理由でハードウェア上で実行したいと考えており、利便性やプライバシー、APIのコスト削減などがその理由です。自然に、多くの開発者がデバイス上でこれらのモデルを効率的に実行する方法を探求し、新しいアプリやユースケースを作成しています。この目標を達成するためのCore MLの改善は、コミュニティにとって大きなニュースです!…
リアルワールドのMLOpsの例:Brainlyでのビジュアル検索のためのエンドツーエンドのMLOpsパイプライン
シリーズ「実世界のMLOpsの例」の第2回目では、Brainlyの機械学習エンジニアであるPaweł Pęczekが、Brainlyのビジュアル検索チームにおけるエンドツーエンドの機械学習オペレーション(MLOps)プロセスを詳しく説明しますそして、MLOpsで成功するためには、技術やプロセスだけではなく、さらに詳細な情報を共有します Enjoy...
MLモデルのパッケージング【究極のガイド】
機械学習モデルを数週間または数カ月かけて構築したことがありますか?そして、後でそれを本番環境に展開するのが複雑で時間がかかることがわかりましたか?または、モデルの複数のバージョンを管理し、展開に必要な依存関係と設定をすべて追跡するのに苦労しましたか?もし頷いているのであれば、...
CVモデルの構築と展開:コンピュータビジョンエンジニアからの教訓
コンピュータビジョン(CV)モデルの設計、構築、展開の経験を3年以上積んできましたが、私は人々がこのような複雑なシステムの構築と展開において重要な側面に十分な注力をしていないことに気づきましたこのブログ投稿では、私自身の経験と、最先端のCVモデルの設計、構築、展開において得た貴重な知見を共有します...
エンドツーエンドのMLパイプラインの構築方法
コミュニティ内のMLエンジニアから最もよく聞かれる不満の1つは、モデルの構築と展開のMLワークフローを手動で行うことがどれだけ費用がかかり、エラーが発生しやすいかということです彼らはトレーニングデータを前処理するためにスクリプトを手動で実行し、展開スクリプトを再実行し、モデルを手動で調整し、働く時間を費やします...
Pythonでトレーニング済みモデルを保存する方法
実世界の機械学習(ML)のユースケースに取り組む際、最適なアルゴリズム/モデルを見つけることは責任の終わりではありませんこれらのモデルを将来の使用や本番環境への展開のために保存、保管、パッケージ化することが重要ですこれらのプラクティスはいくつかの理由から必要です:再強調すると、MLモデルの保存と保管...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.