Learn more about Search Results いくつかの - Page 323

- You may be interested
- 「GPT-4の高度なデータ分析ツールを使った...
- 米政府機関がグローバルサイバー攻撃を受ける
- 「今秋のAiXビジネスサミットの第一弾スピ...
- 「ResFieldsをご紹介します:長くて複雑な...
- 1時間以内に初めてのディープラーニングア...
- 「AIデザインスタジオ、OpenAIによってグ...
- クロスヘアに捧げられた ジェネレーティブ...
- ソフトウェアエンジニアリングの未来 生成...
- テクノロジー・イノベーション・インステ...
- 「自動運転車の安全性について、ブリティ...
- 「医療の分野における人工知能モデルのリ...
- AIとアクセシビリティを活用して、融合エ...
- 「マイクロソフト、『極めて無責任』なセ...
- 「CMUとマックス・プランク研究所の研究者...
- Field Programmable Gate Array(FPGA)と...
Amazon Textract による強化されたテーブル抽出の発表
Amazon Textractは、どんなドキュメントや画像からも自動的にテキスト、手書き文字、およびデータを抽出する機械学習(ML)サービスですAmazon Textractには、AnalyzeDocument API内にTables機能があり、どんなドキュメントからも自動的に表構造を抽出する機能がありますこの記事では、Tables機能における改善点について説明します[…]
テクノロジー・イノベーション・インスティテュートは、最新鋭のFalcon LLM 40BファウンデーションモデルをAmazon SageMakerでトレーニングします
このブログ投稿は、AI-Cross Centerユニットの執行役員であり、TIIのLLMプロジェクトのプロジェクトリーダーであるDr. Ebtesam Almazrouei氏と共同執筆されましたアブダビの先進技術研究委員会の応用研究柱であるアラブ首長国連邦(UAE)のTechnology Innovation Institute(TII)は、基礎となる大規模言語モデルであるFalcon LLMを立ち上げました
Amazon Lexのチャットボット開発ライフサイクルをテストベンチで加速化する
Amazon Lexは、ボットの開発者がシステムのスケーリング前にエラー、欠陥、またはバグを特定し、ボットが特定の要件、ニーズ、および期待を満たしているかどうかを確認するために、テスト工程が必要です新しいボットテストソリューションであるTest Workbenchを発表し、ボットテストプロセスを簡素化、自動化するためのツールを提供することを喜んでいます[…].
GraphStormによる高速グラフ機械学習:企業規模のグラフ問題を解決するための新しい方法
GraphStorm 0.1のオープンソースリリースを発表できることをうれしく思いますGraphStormは、複雑な企業規模のグラフに対して、グラフ機械学習(ML)ソリューションを構築、トレーニング、展開するためのローコードエンタープライズフレームワークであり、数ヶ月ではなく数日で構築することができますGraphStormを使用すると、数十億の関係や相互作用の構造を直接考慮したソリューションを構築できます
Amazon SageMakerでTritonを使用してMLモデルをホストする:ONNXモデル
ONNX(Open Neural Network Exchange)は、多くのプロバイダーによって広くサポートされている深層学習モデルを表現するためのオープンソースの標準ですONNXは、機械学習(ML)モデルを実行するために必要なメモリと計算を削減するための最適化および量子化モデルのツールを提供しますONNXの最大の利点の1つは、標準化された形式を提供することです[…]
Amazon SageMakerのHugging Face推定器とモデルパラレルライブラリを使用してGPT-Jを微調整する
GPT-Jは、Eleuther AIによってリリースされたオープンソースの60億パラメータのモデルですこのモデルはPileで訓練され、言語処理の様々なタスクを実行することができますテキスト分類、トークン分類、テキスト生成、質問応答、エンティティ抽出、要約、感情分析など、様々なユースケースをサポートすることができますGPT-Jは、...
Amazon SageMakerを使用した生成型AIモデルにおいて、Forethoughtがコストを66%以上削減する方法
この記事は、Forethought Technologies, Inc.のエンジニアリングディレクターであるJad Chamounと、同社のシニアMLエンジニアであるSalina Wuと共同執筆されましたForethoughtは、顧客サービスのための先進的な生成AIスイートで、その中核には革新的なSupportGPT™技術があり、顧客サポートライフサイクルを変革し、軽減率を高めるために機械学習を利用しています
AWS Inferentia2は、AWS Inferentia1をベースにしており、スループットが4倍に向上し、レイテンシが10倍低減されています
機械学習モデル(MLモデル)のサイズ、特に生成AIにとって、大規模言語モデル(LLM)やファウンデーションモデル(FM)のサイズは年々急速に増加しており、これらのモデルにはより高速で強力なアクセラレータが必要ですAWS Inferentia2は、LLMや生成AIの推論のコストを下げつつ、より高いパフォーマンスを提供するように設計されましたこの[...]
BrainPadがAmazon Kendraを使用して内部の知識共有を促進する方法
この記事では、Amazon KendraとAWS Lambdaを使用した内部知識共有の構造化方法と、Amazon Kendraが多くの企業が直面する知識共有の障害を解決する方法について説明しています
データ体験の再発明:生成的AIと現代的なデータアーキテクチャを使用して、洞察を解き放つ
現代的なデータアーキテクチャを実装することで、異なるソースからのデータを統合するためのスケーラブルな方法が提供されますインフラストラクチャではなくビジネスドメインによってデータを組織化することにより、各ドメインは自分たちのニーズに合ったツールを選択することができます絶え間ない革新を続けながら、ジェネレーティブAIソリューションによって現代的なデータアーキテクチャの価値を最大化することができます自然言語の機能は、[…]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.