Learn more about Search Results 2022年 - Page 31

このAI論文では、ChatGPTに焦点を当て、テキスト注釈タスクにおける大規模言語モデル(LLM)のポテンシャルを探求しています

高品質のラベル付きデータは、特に分類器のトレーニングや教師なしモデルの有効性の評価には必要不可欠です。例えば、学術研究者はしばしばテキストをさまざまなテーマや概念的なカテゴリに分類し、ノイズの多いソーシャルメディアデータを関連性に基づいてフィルタリングしたり、自分の気分や立場を測定したりするために、ラベル付きのデータが必要です。これらのタスクには、教師あり、半教師あり、または教師なしの方法が使用される場合でも、トレーニングセットやベンチマークを提供するためにラベル付きデータが必要です。このようなデータは、意味解析、ヘイトスピーチなどの高度なタスク、そして時折党派のイデオロギーなどのより専門的な目標のために提供される場合もあります。 研究者は通常、ラベルがその概念的なカテゴリに対応していることを確認するために、オリジナルの注釈を行わなければなりません。最近まで、基本的なアプローチは2つしかありませんでした。例えば、研究者によってコーダーとして雇われ、トレーニングされた研究補助員として働く研究助手がいます。第二に、彼らはAmazon Mechanical Turk(MTurk)のようなウェブサイトで働くフリーランサーに頼ることができます。これらの2つのアプローチはしばしば組み合わされ、クラウドワーカーがラベル付きデータを増やし、トレーニングされたアノテーターが小さな基準データセットを作成することがあります。それぞれの戦略には利点と欠点があります。トレーニングされたアノテーターはしばしば高品質のデータを作成しますが、そのサービスは高価です。 しかし、MTurkのデータの品質の低下についての懸念がありました。Appenという企業志向の組織に買収された後、CrowdFlowerやFigureEightなどの他のプラットフォームは学術研究のための実行可能な選択肢ではなくなりました。クラウドワーカーはより手頃な価格で柔軟性がありますが、特に難しい作業や英語以外の言語に対しては品質が向上する可能性があります。チューリッヒ大学の研究者は、大規模言語モデル(LLM)がテキスト注釈タスクにおける潜在能力を検証しました。特に、2022年11月に公開されたChatGPTに焦点を当てました。それにより、MTurkの注釈に比べて、零ショットのChatGPT分類の方が優れたパフォーマンスを示すことが示されています(つまり、追加のトレーニングなしで)。 LLMは、立法的なアイデアの分類、イデオロギーのスケーリング、認知心理学の問題の解決、調査研究のための人間のサンプルのエミュレーションなど、さまざまなタスクに非常にうまく機能しています。いくつかの調査では、ChatGPTが彼らが指定したテキスト注釈タスクを実行する能力を持っている可能性があることが示されましたが、彼らの知識では、徹底的な評価はまだ行われていません。彼らは、以前の研究のために収集した2,382件のツイートのサンプルを分析に使用しました。そのプロジェクトでは、トレーニングされたアノテーター(研究補助員)によって、関連性、姿勢、主題、および2つのフレーム識別のタスクごとにツイートが注釈付けされました。 彼らはMTurkのクラウドワーカーとChatGPTの零ショット分類にジョブを配布し、研究補助員が作成した同じコードブックを使用してChatGPTのパフォーマンスを2つのベンチマークで評価しました:(i)クラウドワーカーと比較した正確さ;および(ii)クラウドワーカーとトレーニングされたアノテーターとの間の間隔コーダーの合意。彼らは、ChatGPTの零ショットの正確さが4つのタスクにおいてMTurkよりも高いことを発見しました。ChatGPTはすべての機能において、MTurkとトレーニングされたアノテーターを上回る間隔コーダーの合意を示しています。 また、ChatGPTはMTurkよりもはるかに手頃な価格です。ChatGPTでの5つのカテゴリ化タスクは約68ドル(25,264の注釈)かかりますが、MTurkでの同じタスクは657ドル(12,632の注釈)かかります。したがって、ChatGPTのコストはわずか0.003ドル、つまり1/3ペニーであり、MTurkよりも約20倍安く、優れた品質を提供します。このコストで全体のサンプルを注釈付けすることや、教師あり学習のための大規模なトレーニングセットを構築することが可能です。 彼らは100,000の注釈をテストし、それが約300ドルかかると結論付けました。これらの結果は、ChatGPTや他のLLMが研究者がデータの注釈付けを行う方法を変え、MTurkのようなプラットフォームのビジネスモデルの一部を覆す可能性があることを示しています。ただし、ChatGPTや他のLLMが広範なコンテキストでどのように機能するかを完全に理解するためには、さらなる研究が必要です。

「2023年のトップコンピュータビジョンツール/プラットフォーム」

コンピュータビジョンは、デジタル写真やビデオ、その他の視覚的な入力から有用な情報を抽出し、それに応じてアクションを実行したり、推奨を提供したりするためのコンピュータやシステムの能力を可能にします。コンピュータビジョンは、マシンに知覚、観察、理解する能力を与え、人工知能が思考する能力を与えるのと同様の能力を提供します。 人間の視覚は、長い間存在しているため、コンピュータビジョンに比べて優位性があります。生涯のコンテキストを持つことで、人間の視覚は物事を区別し、視聴者からの距離を測定し、物体が動いているかどうかを判断し、画像が正しいかどうかを判断する方法を学びます。 視神経や視覚皮質ではなく、カメラ、データ、アルゴリズムを使用することで、コンピュータビジョンは同様のタスクをはるかに短時間で実行する方法をコンピュータに教えます。製品の検査や生産資産の監視をトレーニングしたシステムは、目に見えない欠陥や問題を見つけながら、1分間に数千もの製品やプロセスを検査できるため、人間よりも迅速に優れたパフォーマンスを発揮します。 エネルギー、公益事業、製造業、自動車産業など、さまざまな業界でコンピュータビジョンが使用されており、市場は今も拡大し続けています。 コンピュータビジョンシステムで利用できるいくつかの典型的なジョブは次のとおりです: オブジェクトの分類。システムは、画像やビデオの中のオブジェクトを事前に定義された見出しの下に分類する前に、視覚データを分析します。例えば、アルゴリズムは画像内のすべてのアイテムの中から犬を識別することができます。 アイテムの識別。システムは、視覚データを分析し、画像やビデオの中の特定のオブジェクトを認識します。例えば、アルゴリズムは画像内の犬の中から特定の犬を選び出すことができます。 オブジェクトの追跡。システムはビデオを分析し、検索条件を満たすオブジェクト(またはオブジェクト)を識別し、そのオブジェクトの進行状況を追跡します。 トップのコンピュータビジョンツール Kili Technologyのビデオ注釈ツール Kili Technologyのビデオ注釈ツールは、ビデオファイルから高品質なデータセットの作成を簡素化し、加速するために設計されています。このツールは、バウンディングボックス、ポリゴン、セグメンテーションなど、さまざまなラベリングツールをサポートしており、正確な注釈を可能にします。高度なトラッキング機能により、直感的なエクスプロアビューでフレームを簡単にナビゲートし、すべてのラベルを確認することができます。 このツールはさまざまなビデオ形式に対応し、人気のあるクラウドストレージプロバイダーとシームレスに統合されるため、既存の機械学習パイプラインとのスムーズな統合が保証されます。Kili Technologyのビデオ注釈ツールは、ラベリングプロセスを最適化し、強力なデータセットを構築するための究極のツールキットです。 OpenCV OpenCVは、機械学習とコンピュータビジョンのためのソフトウェアライブラリです。OpenCVは、コンピュータビジョンアプリケーションのための標準的なインフラストラクチャを提供するために開発され、2,500以上の伝統的なアルゴリズムと最新のアルゴリズムにアクセスできます。 これらのアルゴリズムは、顔の識別、赤目の除去、オブジェクトの識別、オブジェクトの3Dモデルの抽出、動くオブジェクトの追跡、複数のフレームを高解像度の画像に繋げるなど、さまざまなことに使用することができます。 Viso Suite コンピュータビジョンの開発、展開、監視のための完全なプラットフォームであるViso Suiteは、企業が実用的なコンピュータビジョンアプリケーションを作成することを可能にします。ノーコードプラットフォームの基盤となるコンピュータビジョンのための最高のソフトウェアスタックには、CVAT、OpenCV、OpenVINO、TensorFlow、またはPyTorchが含まれています。 画像の注釈、モデルのトレーニング、モデルの管理、ノーコードアプリケーションの開発、デバイスの管理、IoT通信、カスタムダッシュボードなど、Viso Suiteを構成する15のコンポーネントの一部です。ビジネスや政府機関は、産業自動化、視覚検査、リモートモニタリングなどのためのコンピュータビジョンアプリケーションのポートフォリオを作成および管理するために、Viso…

「6人の女性が気候変動との戦いをリードしている」

「私たちは、気候科学のパイオニアであるユニス・ニュートン・フット博士と、女性が率いるGoogle.orgの6つの恩恵を受ける組織に敬意を表します彼らはより持続可能な未来を築いています」

気候変動との戦いをリードする6人の女性

「私たちは気候科学の先駆者であるユニス・ニュートン・フートと、より持続可能な未来を築く6人の女性主導のGoogle.orgの助成金受給者を祝っています」

「AIがALS患者の声を保存するのに役立っています」

ALS患者はAIを利用して、声と話す能力を保護するために使用していますCBSの報告書では、ブライアン・ジャンソンが自分の病気と、まだ話すことができる間に声を録音するプロセスについて語りましたこの音声保存と呼ばれるプロセスは、ジャンソンにAIを使用して...

「Gartner Market Guideに掲載されているDataOps.liveでDataOpsの成功を実現しましょう!」

「DataOps市場についてもっと学びたい方は、GartnerのDataOpsツール市場ガイドの無料コピーをダウンロードしてください」

「UIとUXのためのトップAIツール(2023年)」

これまでの数年間、特に2022年から2023年にかけて、ユーザーエクスペリエンスデザインの風景には大きな変化がありました。デザイナーにはさまざまなリソースが利用できます。最高のAI駆動ツールは、各プロセスの段階ごとに最終製品のプレビューをデザイナーに提供します。その一つが人工知能(AI)プロトタイピングツールであり、デザイナーは作業を各段階で評価することで時間と労力を節約することができます。 デザインにおける人工知能(AI)により、デザイナーはワークフローを完全に自動化することができます。ユーザーインターフェースおよびユーザーエクスペリエンスデザインのための人工知能の強化ツールは、デザインプロセスのあらゆる側面をはるかに速く簡単にします。 市場にあるトップの人工知能(AI)デザインツールを見て、UI/UXデザイナーがそれらをどのように活用できるかを考えてみましょう。 Uizard Uizardは、人間のようなグラフィカルユーザーインターフェースの理解を自動化する広く使用されているシステムです。ネイティブモバイルアプリを作成するには、デザイナーがスケッチといくつかのAIの助けを必要とします。それはスケッチからコードを生成するだけでなく、デザインプロセスも自動化します。Uizardはデザインとフローのユーザーテストに優れたツールです。 Chat GPT Chat GPTを使用することで、デザインプロセスは大いに恩恵を受けることができます。コンテンツベースのテキストプロンプトを生成できる能力により、デザインのインスピレーションやユーザーリサーチのアイデア、アクセシビリティの解決策など、あらゆることに役立ちます。UXデザイナーは、デジタルアイテムをよりユーザーフレンドリーで興味深いものにするためにChatGPTの助けを借りることができます。ユーザーインターフェース、製品の説明、コーチマーカーなどのコンテンツの作成は、このカテゴリーに含まれます。デザイナーはより良いコンテンツを提供することでユーザーエクスペリエンスを向上させることができ、このツールが彼らをサポートします。 Khroma Khromaは、色の選択にかかる時間を短縮したいデザイナーのために開発された最新のカラーツールです。お気に入りの50色を選び、AIアルゴリズムに無数の類似した色を認識させることで、無限のカラースキームを作成することができます。テキスト、ポスター、グラデーション、写真など、これらのカラースキームはさまざまなカテゴリーに分類され、ユーザーが簡単にアクセスできます。さらに、デザイナーは自分のオリジナルの画像のコンテキストで自分のカラーパレットがどのように見えるかを確認することができます。 Let’s Enhance Let’s Enhanceは、デザイナーが画質を損なうことなく画像の解像度を向上させるのに役立つ強力な人工知能ツールです。すべてが迅速かつ自動的に行われます。画像は品質の低下がほとんど見られないまま最大16倍拡大することができます。Let’s Enhanceを使用すると、写真の改善が簡単になります。このツールにより、デザイナーは人間の介入なしで高解像度の画像を作成することができます。 Balsamiq ほとんどのデザイナーは、作品の最終形態をイメージする際に、できるだけシンプルに保つことを重視しています。Balsamiqを使用することで、このプロセスをサポートすることができます。Balsamiqのワイヤーフレームインターフェースは、競合するプロトタイピングプログラムの派手でカラフルなインターフェースとは対照的に、最小限で明確です。これはノートブックやホワイトボードでの落書きにデジタルな相当物を提供することを目指しています。このツールの最大の利点は、デザイナーが色やフォント、レイアウトなどのプレゼンテーションの側面を後で調整できるようにする代わりに、作品の内容に集中することができることです。 Mockplus 創造性の実装、コミュニケーション、素材収集、手作業の削減など、デザイナーをサポートするツールを考える際に、Mockplusは最初に思い浮かぶものの一つです。AI駆動のデザインの時代において、すべてのデザイナーはMockplusが必要です。このツールを使用すると、デザイナーはSketch、Photoshop、Adobe XDなどのプログラムから直接作品をエクスポートし、インタラクティブなプロトタイプを作成することができます。また、デザイナーは事前に作成された仕様を確認し、インタラクティブなプロトタイプを作成することもできます。 Beautiful.ai プレゼンテーションソフトウェアBeautiful.aiは、人々が魅力的なビジュアルな資料を作成する方法を変えています。Design AIを使用すると、誰でも数分で素晴らしいプレゼンテーションを作成することができます。70以上のプロフェッショナルにデザインされたスライドテンプレートで簡単に始めることができます。新しいテキストを追加すると、スライドは自動的に変更されます。もうテキストボックスや矢印の配置に時間を無駄に費やす必要はありません。…

AIによる生産性向上 生成AIが様々な産業において効率の新たな時代を開く

2022年11月22日、ほとんど仮想的な瞬間が訪れ、それは地球上のほぼすべての産業の基盤を揺るがしました。 その日、OpenAIは史上最も高度な人工知能チャットボットであるChatGPTをリリースしました。これにより、消費者の質問に答えるための生成型AIアプリケーションから科学的なブレークスルーを追求する研究者の作業を加速するまで、ビジネスがより効率的になるための需要が生まれました。 以前はAIに手を出していた企業も、最新のアプリケーションを採用・展開するために急ぎます。アルゴリズムが新しいテキスト、画像、音声、アニメーション、3Dモデル、さらにはコンピュータコードを生成することができる生成型AIは、人々が働く・遊ぶ方法を変革しています。 大規模な言語モデル(LLM)を用いてクエリを処理することにより、この技術は情報の検索や編集などの手作業に費やす時間を劇的に短縮することができます。 その賭けは大きいです。PwCによると、AIは2030年までに世界経済に1兆5千億ドル以上をもたらす可能性があります。そして、AIの導入の影響はインターネット、モバイルブロードバンド、スマートフォンの発明以上に大きいかもしれません。 生成型AIを推進するエンジンは、高速計算です。これは、科学、分析、エンジニアリング、消費者およびエンタープライズのユースケース全般にわたり、GPU、DPU、ネットワーキング、およびCPUを使用してアプリケーションを高速化します。 早期の採用企業は、薬剤探索、金融サービス、小売、通信、エネルギー、高等教育、公共部門など、さまざまな業界で、高速計算と生成型AIを組み合わせてビジネスのオペレーション、サービス提供、生産性の向上を実現しています。 インフォグラフィックを表示するにはクリックしてください:次世代のAI変革を生み出す 薬剤探索のための生成型AI 今日、放射線科医はAIを使用して医療画像の異常を検出し、医師は電子健康記録をスキャンして患者の洞察を明らかにし、研究者は新しい薬剤の発見を加速するためにそれを使用しています。 従来の薬剤探索は、5000以上の化学物質の合成を必要とし、平均的な成功率はわずか10%です。そして、ほとんどの新薬候補が市場に出るまでに10年以上かかります。 研究者は、生成型AIモデルを使用してタンパク質のアミノ酸配列を読み取り、ターゲットタンパク質の構造を秒単位で正確に予測することができます。これには数週間または数か月かかることがあります。 NVIDIAのBioNeMoモデルを使用して、バイオテクノロジーの世界的リーダーであるアムジェンは、分子スクリーニングと最適化のためのモデルのカスタマイズにかかる時間を3か月からわずか数週間に短縮しました。このタイプのトレーニング可能な基礎モデルにより、科学者は特定の疾患の研究のためのバリアントを作成し、希少な状態の治療法を開発することができます。 タンパク質構造の予測や大規模な実世界および合成データセットでのアルゴリズムの安全なトレーニングなど、生成型AIと高速計算は、疾病の拡散を緩和し、個別の医療治療を可能にし、患者の生存率を向上させるための新たな研究領域を開拓しています。 金融サービスのための生成型AI NVIDIAの最新の調査によると、金融サービス業界での主要なAIの活用事例は、カスタマーサービスとディープアナリティクスです。ここでは、自然言語処理とLLMが使用され、顧客の問い合わせにより良い対応をするためや投資の洞察を明らかにするために使用されています。別の一般的な応用は、パーソナライズされた銀行体験、マーケティング最適化、投資ガイダンスを提供する推薦システムです。 先進的なAIアプリケーションは、この業界が不正行為をより防止し、ポートフォリオ計画やリスク管理からコンプライアンスや自動化まで、銀行業務のあらゆる側面を変革する可能性があります。 ビジネスに関連する情報の80%は構造化されていない形式、主にテキスト形式ですが、これは生成型AIの主要な対象となります。Bloomberg Newsは、金融および投資コミュニティに関連するニュースを1日に5,000本も発行しています。これらの記事は、タイムリーな投資の決定をするために使用できる膨大な非構造化市場データの宝庫です。 NVIDIA、ドイツ銀行、ブルームバーグなどは、ドメイン固有のデータや独自のデータをトレーニングおよび微調整するために訓練されたLLMを作成して、金融アプリケーションに使用しています。 金融トランスフォーマー、または「FinFormers」は、非構造化の金融データの文脈を学び、意味を理解することができます。これらはQ&Aチャットボットのパワーを供給し、金融テキストを要約・翻訳し、取引先リスクの早期警告サインを提供し、データを迅速に取得し、データ品質の問題を特定することができます。 これらの生成型AIツールは、プロプライエタリデータをモデルトレーニングおよび微調整に統合し、バイアスを防ぐためのデータキュレーションを統合し、会話を金融に特化させるためのガードレールを使用するフレームワークに依存しています。 フィンテックスタートアップや大手国際銀行がLLMと生成型AIの使用を拡大し、内部および外部の利害関係者に対して洗練されたバーチャルアシスタントを提供し、ハイパーカスタマー向けのコンテンツを作成し、マニュアル作業を削減するために文書要約を自動化し、テラバイトの公共および非公開データを分析して投資の洞察を生成することを期待してください。 小売業における生成AI…

「LLMsの実践的な導入」

「これは、実践で Large Language Models (LLMs) を使用するシリーズの最初の記事ですここでは、LLMs の紹介とそれらとの作業の3つのレベルを紹介します将来の記事では...」

アップリフトモデルの評価

業界での因果推論の最も広く利用されているアプリケーションの1つは、アップリフトモデリング、または条件付き平均治療効果の推定ですある処置の因果効果を推定する際には、

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us