Learn more about Search Results いくつかの - Page 310
- You may be interested
- 「AIを活用したツールにより、3Dプリント...
- Diffusersを使用したDreamboothによる安定...
- 「カスタマイズされたLLMパワードAIアシス...
- 「2023年に試してみるべき20の中間旅行の...
- 「マーケティングにおける人工知能の短い...
- 「2024年に注目すべきサイバーセキュリテ...
- 「データは言語モデルの基盤です」
- 「部分情報分解とは何か、そして特徴がど...
- 「全体的な実験の影響を推定する」
- 「言語の力を解き放つ:NVIDIAのアナマラ...
- ジェミニに会ってください:Googleの画期...
- 「LLM評価のガイド:設定と重要な指標」
- AIベースのアプリケーションテストのトッ...
- 詳細に説明されたLlama 2:Metaの大型言語...
- 「機械学習手法を用いたJava静的解析ツー...
ChatGPTの哲学コース:このAI研究は、対話エージェントのLLMの振る舞いを探究します
2023年はLLMの年です。ChatGPT、GPT-4、LLaMAなど、新しいLLMモデルが続々と注目を集めています。これらのモデルは自然言語処理の分野を革新し、さまざまなドメインで増え続ける利用に遭遇しています。 LLMには、対話を行うなど、人間のような対話者との魅力的な幻想を生み出す幅広い行動を示す驚くべき能力があります。ただし、LLMベースの対話エージェントは、いくつかの点で人間とは大きく異なることを認識することが重要です。 私たちの言語スキルは、世界との具体的なやり取りを通じて発達します。私たちは個人として、社会化や言語使用者のコミュニティでの浸透を通じて認知能力や言語能力を獲得します。このプロセスは赤ちゃんの場合はより早く、成長するにつれて学習プロセスは遅くなりますが、基礎は同じです。 一方、LLMは、与えられた文脈に基づいて次の単語またはトークンを予測することを主な目的とした、膨大な量の人間が生成したテキストで訓練された非具体的なニューラルネットワークです。彼らのトレーニングは、物理的な世界の直接的な経験ではなく、言語データから統計的なパターンを学ぶことに焦点を当てています。 これらの違いにもかかわらず、私たちはLLMを人間らしく模倣する傾向があります。これをチャットボット、アシスタントなどで行います。ただし、このアプローチには難しいジレンマがあります。LLMの行動をどのように説明し理解するか? LLMベースの対話エージェントを説明するために、「知っている」「理解している」「考えている」などの用語を人間と同様に使用することは自然です。ただし、あまりにも文字通りに受け取りすぎると、このような言葉は人工知能システムと人間の類似性を誇張し、その深い違いを隠すことになります。 では、どのようにしてこのジレンマに取り組むことができるでしょうか? AIモデルに対して「理解する」や「知っている」という用語をどのように説明すればよいでしょうか? それでは、Role Play論文に飛び込んでみましょう。 この論文では、効果的にLLMベースの対話エージェントについて考え、話すための代替的な概念的枠組みや比喩を採用することを提案しています。著者は2つの主要な比喩を提唱しています。1つ目の比喩は、対話エージェントを特定のキャラクターを演じるものとして描写するものです。プロンプトが与えられると、エージェントは割り当てられた役割やペルソナに合わせて会話を続けるようにします。その役割に関連付けられた期待に応えることを目指します。 2つ目の比喩は、対話エージェントをさまざまなソースからのさまざまなキャラクターのコレクションとして見るものです。これらのエージェントは、本、台本、インタビュー、記事など、さまざまな材料で訓練されており、異なるタイプのキャラクターやストーリーラインに関する多くの知識を持っています。会話が進むにつれて、エージェントは訓練データに基づいて役割やペルソナを調整し、キャラクターに応じて適応して対応します。 自己回帰サンプリングの例。出典:https://arxiv.org/pdf/2305.16367.pdf 最初の比喩は、対話エージェントを特定のキャラクターとして演じるものとして描写します。プロンプトが与えられると、エージェントは割り当てられた役割やペルソナに合わせて会話を続けるようにします。その役割に関連付けられた期待に応えることを目指します。 2つ目の比喩は、対話エージェントをさまざまなソースからのさまざまなキャラクターのコレクションとして見るものです。これらのエージェントは、本、台本、インタビュー、記事など、さまざまな材料で訓練されており、異なるタイプのキャラクターやストーリーラインに関する多くの知識を持っています。会話が進むにつれて、エージェントは訓練データに基づいて役割やペルソナを調整し、キャラクターに応じて適応して対応します。 対話エージェントの交代の例。出典:https://arxiv.org/pdf/2305.16367.pdf このフレームワークを採用することで、研究者やユーザーは、人間にこれらの概念を誤って帰属させることなく、欺瞞や自己認識などの対話エージェントの重要な側面を探求することができます。代わりに、焦点は、役割演技シナリオでの対話エージェントの行動や、彼らが模倣できる様々なキャラクターを理解することに移ります。 結論として、LLMに基づく対話エージェントは人間らしい会話をシミュレートする能力を持っていますが、実際の人間の言語使用者とは大きく異なります。役割プレイヤーやシミュレーションの組み合わせなどの代替的な隠喩を使用することにより、LLMベースの対話システムの複雑なダイナミクスをより理解し、その創造的な可能性を認識しながら、人間との根本的な相違を認識できます。
ChatGPTを使った効率的なデバッグ
大規模言語モデルの力を借りて、デバッグ体験を向上させ、より速く学習する
SeabornとMatplotlibを使用して美しい年齢分布グラフを作成する方法(アニメーションを含む)
今日は、matplotlibとseabornを使って上記のような美しい年齢分布グラフを作成する方法を紹介したいと思います年齢分布グラフは、人口統計の視覚化に優れています...
医師たちはバーチャルリアリティでトレーニングします
シミュレーションは外科医を実際の手術に準備させます
Light & WonderがAWS上でゲーミングマシンの予測保守ソリューションを構築した方法
この記事は、ライトアンドワンダー(L&W)のアルナ・アベヤコーン氏とデニス・コリン氏と共同執筆したものですライトアンドワンダーは、ラスベガスを拠点とするクロスプラットフォームゲーム会社であり、ギャンブル製品やサービスを提供していますAWSと協力して、ライトアンドワンダーは最近、業界初の安全なソリューション「Light & Wonder Connect(LnW Connect)」を開発しました[…]
Google Researchにおける責任あるAI 社会的善のためのAI
Google Research、AI for Social GoodのソフトウェアエンジニアであるJimmy TobinとKatrin Tomanekが投稿しました。 GoogleのAI for Social Goodチームは、研究者、エンジニア、ボランティア、その他のメンバーが、ポジティブな社会的インパクトに焦点を合わせたチームです。私たちの使命は、公衆衛生、アクセシビリティ、危機対応、気候とエネルギー、自然と社会の各分野で、現実世界での価値を実現することによって、AIの社会的な利益を示すことです。私たちは、未開発なコミュニティに対してポジティブな変化をもたらす最良の方法は、変化をもたらす人々やその組織と協力することだと信じています。 このブログ記事では、AI for Social Good内のチームであるProject Euphoniaが行った作業について説明します。このチームは、障害のある人々のための自動音声認識(ASR)の改善を目的としています。通常の発話を持つ人々にとって、ASRモデルの単語エラー率(WER)は10%未満になることがありますが、吃音、失語症、失行症などの障害のある人々の場合、エチオロジーと重症度に応じてWERは50%または90%に達することがあります。この問題に対処するために、私たちは1,000人以上の参加者と協力して、1,000時間以上の障害のある音声サンプルを収集し、個人化されたASRが障害のある人々のパフォーマンスギャップを埋めるための実現可能な道であることを示しました。私たちは、レイヤー凍結技術を使用して、3〜4分のトレーニング音声で個人化が成功することを示しました。 この作業は、個人化された音声モデルを必要とする人々にとって有益であるProject Relateの開発につながりました。GoogleのSpeechチームと共同で構築されたProject Relateは、典型的な音声の理解が難しい人々が自分自身のモデルをトレーニングできるようにするものです。人々はこれらの個人化されたモデルを使用して、より効果的にコミュニケーションを取り、より独立した生活を送ることができます。ASRをよりアクセス可能で使いやすくするために、デジタルアシスタント技術、ディクテーションアプリ、および会話で使用するために、GoogleのUniversal Speech Model(USM)を調整する方法について説明します。 課題に対処する Project Relateのユーザーと緊密に連携して作業を行うことで、個人化されたモデルは非常に有用であることが明らかになりましたが、多くのユーザーにとって、数十または数百の例を記録することは困難です。さらに、個人化されたモデルは、自由形式の会話では常にうまく機能しなかったこともわかりました。…
ロボットは人間と同じく植物を育てることができますが、より少ない量の水を使用します
カリフォルニア大学バークレー校の研究者たちは、人間と同じように植物を育てることができ、より多くの水を節約することができるロボット園芸家を開発しました
チャットボットの台頭
ボットがますます巧妙な嘘つきになっているときに、真実を追跡するにはどうすればよいですか?
AIによる光通信の加速化
通信効率の向上は、光フォトニクス技術を人工知能に導入するのに役立ちます
ジョン・イサザ弁護士、FAI氏によるAIとChatGPTの法的な土壌を航行する方法
私たちは、Rimon LawのパートナーであるJohn Isaza, Esq., FAIに感謝しています彼は、法的な景観の変化、プライバシー保護とイノベーションの微妙なバランス、そしてAIツールを統合する際に生じる独特の法的な意義など、多岐にわたる側面で自身の物語と貴重な洞察を共有してくれましたJohnは、AIに関連する課題や考慮事項について貴重な観点を提供しています...John Isaza, Esq., FAI がAIとChatGPTの法的景観を航海するための記事を読む»
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.