Learn more about Search Results https://www.voagi.com/easy-access-to-data-lake-tables-with-api.html - Page 2

このAIニュースレターはあなたが必要なものです #68

今週は、マルチモーダルの能力を持つ GPT-4 に対抗する候補として、新しいオープンソースのマルチモーダルモデルである LLaVA v1.5 の登場を目撃しましたそれはシンプルな...

「Amazon SageMaker Data Wranglerを使用して、Amazon Personalizeのデータを準備する」

「レコメンドエンジンは、それを準備するために使用されるデータのみならず優れたものです生データをモデルに適した形式に変換することは、エンドユーザーにより良いパーソナライズされたおすすめをするための鍵ですこの記事では、GroupLens研究によって準備されたMovieLensデータセットの準備とインポート方法について解説します」

MailchimpにおけるMLプラットフォーム構築の教訓

この記事はもともと、「MLプラットフォームポッドキャスト」という番組のエピソードでしたこの番組では、ピオトル・ニェジヴィエツとアウリマス・グリチューナスが、MLプラットフォームの専門家たちと一緒に、設計の選択肢、ベストプラクティス、サンプルのツールスタック、そして最高のMLプラットフォームの専門家たちからの実際の学びを話し合っていますこのエピソードでは、ミキコ・バゼリーがMLの構築から学んだことを共有します...

Segmind APIとPostmanを使用した簡単なGenAIアプリの統合

はじめに 人工知能(AI)をアプリケーションに統合することは、ビジネス競争力を維持するためにますます必要になっています。これらのAI機能を追加することで、ユーザー体験が向上し、タスクが自動化され、有益な洞察が提供されます。私たちは多様なGenAIモデルを利用できるため、可能性があります。しかし、AIをアプリに統合することは複雑です。特にGenAIの新しいトレンドでは、まだ多くのプロセスが試行錯誤されています。したがって、ファッションアプリなどの個人用アプリケーションやソフトウェアにGenAIを統合する方法を知りたい場合は、この記事ではSegmind APIとPostmanを使用してGenAIアプリを統合するプロセスを簡素化することを目指しています。 学習目標 SegmindモデルとAPIの理解 SegmindとのGenAI統合APIの理解 Segmind APIとのPostmanの使用 この記事は、Data Science Blogathonの一環として公開されました。 SegmindモデルAPIの理解 SegmindのGenAI APIを包括的に理解するためには、その目的、機能、利点を理解する必要があります。eコマースアプリやファッションデザイン、アニメーション、背景除去、アートワーク、絵画、漫画などの画像認識に関する潜在的なユースケースを強調することができます。利用の容易さに加えて、Segmind AIはWebサイトのAPIとプレイグラウンドを介して利用可能なGenAIモデルを提供しています。この記事ではAPIの推論コールを使用します。利用可能なAPIスクリプトを使用して、タスクに適したモデルを選択することは簡単です。以下は、https://www.segmind.com/models/sd1.5-outpaint/api で利用可能なStable Diffusion 1.5 Outpaintingモデルの例です。 import requests from base64 import…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us