Learn more about Search Results XLNet - Page 2
- You may be interested
- 『たった10行のコードで任意のGPUに適合す...
- 「これらの仕事はAIによって置き換えられ...
- 「ETLにおける進化:変換の省略がデータ管...
- 「進化アルゴリズム-選択法の説明」
- AIの聴覚スキルを革命化する:清華大学と...
- 「フェイスブックの10億スケールの検索ア...
- 「最も難しいPandas:ピボットテーブル、...
- TDSベストオブ2023:ChatGPTとLLMについて
- チューリングのミル:AIスーパーコンピュ...
- 「データサイエンスにおけるデータベース...
- 魅力的な生成型AIの進化
- 「ビジネス成功のためのAIデータツールの...
- 「GPT-4 8つのモデルを1つに統合、秘密が...
- ハイプに乗ろう! ベイエリアでのAIイベント
- 「オフィスの空気はどれほど安全ですか?...
テキストの生成方法:トランスフォーマーを使用した言語生成のための異なるデコーディング方法の使用方法
はじめに 近年、大規模なトランスフォーマーベースの言語モデル(例えば、OpenAIの有名なGPT2モデル)が数百万のウェブページを学習することで、オープンエンドの言語生成に対する関心が高まっています。条件付きのオープンエンドの言語生成の結果は印象的です。例えば、ユニコーンに関するGPT2、XLNet、CTRLでの制御言語生成などです。改良されたトランスフォーマーアーキテクチャや大量の非教示学習データに加えて、より良いデコーディング手法も重要な役割を果たしています。 このブログ記事では、異なるデコーディング戦略の概要と、さらに重要なことに、人気のあるtransformersライブラリを使ってそれらを簡単に実装する方法を紹介します! 以下のすべての機能は、自己回帰言語生成に使用することができます(ここでは復習です)。要するに、自己回帰言語生成は、単語のシーケンスの確率分布を条件付き次の単語の分布の積として分解できるという仮定に基づいています: P(w1:T∣W0)=∏t=1TP(wt∣w1:t−1,W0) ,with w1:0=∅, P(w_{1:T} | W_0 ) = \prod_{t=1}^T P(w_{t} | w_{1: t-1}, W_0) \text{ ,with } w_{1: 0} = \emptyset, P(w1:T∣W0)=t=1∏TP(wt∣w1:t−1,W0) ,with w1:0=∅,…
Streamlitを使用して、Hugging Face Spacesにモデルとデータセットをホスティングする
Streamlitを使用してHugging Face Spacesでデータセットとモデルを紹介する Streamlitを使用すると、データセットを視覚化し、機械学習モデルのデモをきれいに構築することができます。このブログ記事では、モデルとデータセットのホスティング、およびHugging Face SpacesでのStreamlitアプリケーションの提供方法をご紹介します。 モデルのデモを作成する Hugging Faceのモデルを読み込んで、Streamlitを使用してクールなUIを構築することができます。この具体的な例では、「Write with Transformer」を一緒に再現します。GPT-2やXLNetなどのtransformerを使用して何でも書けるアプリケーションです。 推論の仕組みについては詳しく触れません。ただし、この特定のアプリケーションにはいくつかのハイパーパラメータ値を指定する必要があることを知っておく必要があります。Streamlitには、カスタムアプリケーションを簡単に実装できる多くのコンポーネントが提供されています。必要なハイパーパラメータを推論コード内で受け取るために、それらの一部を使用します。 .text_areaコンポーネントは、入力する文章を受け入れるための素敵なエリアを作成します。 Streamlitの.sidebarメソッドを使用すると、サイドバーで変数を受け入れることができます。 sliderは連続値を取るために使用されます。ステップを指定しない場合、値は整数として扱われますので、忘れずにステップを指定してください。 number_inputを使用すると、エンドユーザーに整数値の入力をさせることができます。 import streamlit as st # テキストボックスに表示されるデフォルトのテキストを追加 default_value =…
ゼロから大規模言語モデルを構築するための初心者ガイド
はじめに TwitterやLinkedInなどで、私は毎日多くの大規模言語モデル(LLMs)に関する投稿に出会います。これらの興味深いモデルに対してなぜこれほど多くの研究と開発が行われているのか、私は疑問に思ったこともあります。ChatGPTからBARD、Falconなど、無数のモデルの名前が飛び交い、その真の性質を解明したくなるのです。これらのモデルはどのように作成されるのでしょうか?大規模言語モデルを構築するにはどうすればよいのでしょうか?これらのモデルは、あなたが投げかけるほとんどの質問に答える能力を持つのはなぜでしょうか?これらの燃えるような疑問は私の心に長く残り、好奇心をかき立てています。この飽くなき好奇心は私の内に火をつけ、LLMsの領域に飛び込む原動力となっています。 私たちがLLMsの最先端について議論する刺激的な旅に参加しましょう。一緒に、彼らの開発の現状を解明し、彼らの非凡な能力を理解し、彼らが言語処理の世界を革新した方法に光を当てましょう。 学習目標 LLMsとその最新の状況について学ぶ。 利用可能なさまざまなLLMsとこれらのLLMsをゼロからトレーニングするアプローチを理解する。 LLMsのトレーニングと評価におけるベストプラクティスを探究する。 準備はいいですか?では、LLMsのマスタリングへの旅を始めましょう。 大規模言語モデルの簡潔な歴史 大規模言語モデルの歴史は1960年代にさかのぼります。1967年にMITの教授が、自然言語を理解するための最初のNLPプログラムであるElizaを作成しました。Elizaはパターンマッチングと置換技術を使用して人間と対話し理解することができます。その後、1970年にはMITチームによって、人間と対話し理解するための別のNLPプログラムであるSHRDLUが作成されました。 1988年には、テキストデータに存在するシーケンス情報を捉えるためにRNNアーキテクチャが導入されました。2000年代には、RNNを使用したNLPの研究が広範に行われました。RNNを使用した言語モデルは当時最先端のアーキテクチャでした。しかし、RNNは短い文にはうまく機能しましたが、長い文ではうまく機能しませんでした。そのため、2013年にはLSTMが導入されました。この時期には、LSTMベースのアプリケーションで大きな進歩がありました。同時に、アテンションメカニズムの研究も始まりました。 LSTMには2つの主要な懸念がありました。LSTMは長い文の問題をある程度解決しましたが、実際には非常に長い文とはうまく機能しませんでした。LSTMモデルのトレーニングは並列化することができませんでした。そのため、これらのモデルのトレーニングには長い時間がかかりました。 2017年には、NLPの研究において Attention Is All You Need という論文を通じてブレークスルーがありました。この論文はNLPの全体的な景色を変革しました。研究者たちはトランスフォーマーという新しいアーキテクチャを導入し、LSTMに関連する課題を克服しました。トランスフォーマーは、非常に多数のパラメータを含む最初のLLMであり、LLMsの最先端モデルとなりました。今日でも、LLMの開発はトランスフォーマーに影響を受けています。 次の5年間、トランスフォーマーよりも優れたLLMの構築に焦点を当てた重要な研究が行われました。LLMsのサイズは時間とともに指数関数的に増加しました。実験は、LLMsのサイズとデータセットの増加がLLMsの知識の向上につながることを証明しました。そのため、BERT、GPTなどのLLMsや、GPT-2、GPT-3、GPT 3.5、XLNetなどのバリアントが導入され、パラメータとトレーニングデータセットのサイズが増加しました。 2022年には、NLPにおいて別のブレークスルーがありました。 ChatGPT は、あなたが望むことを何でも答えることができる対話最適化されたLLMです。数か月後、GoogleはChatGPTの競合製品としてBARDを紹介しました。…
大規模言語モデル(LLM)とは何ですか?LLMの応用と種類
コンピュータプログラムである大規模言語モデルは、テキストの解析や作成のための新しいオプションをソフトウェアに提供します。大規模言語モデルは、ペタバイト以上のテキストデータを使用してトレーニングされることが珍しくなく、そのサイズは数テラバイトになることもあります。モデルのパラメータは、以前のトレーニングデータから学習されたコンポーネントであり、テキスト生成などのタスクにおけるモデルの適性を確立します。音声認識、感情分析、テキスト要約、スペルチェック、トークンの分類など、自然言語処理(NLP)の活動は、言語モデルを基盤としています。言語モデルはテキストを分析し、ほとんどの自然言語処理のタスクで次のトークンの確率を予測することができます。ユニグラム、N-グラム、指数、およびニューラルネットワークは、言語モデルの有効な形式です。 LLMの応用 以下のチャートは、大規模言語モデル(LLM)の現状を機能、製品、およびサポートソフトウェアの面でまとめたものです。 画像の出典:https://cobusgreyling.medium.com/the-large-language-model-landscape-9da7ee17710b シェルコマンドの生成 次世代ターミナルのWarpは、GPT-3を使用して自然言語を実行可能なシェル命令に変換します。GitHub Copilotのようなものですが、ターミナル向けです。 経験豊富なプログラマでも、シェルコマンドの構文を説明する必要がある場合があります。 正規表現の生成 開発者にとって正規表現の生成は時間がかかりますが、Autoregex.xyzはGPT-3を活用してこのプロセスを自動化します。 コピーライティング このタスクに最も人気のあるモデルはGPT-3ですが、BigScienceのBLOOMやEleuther AIのGPT-Jなどのオープンソースの代替品もあります。Copy ai、Copysmith、Contenda、Cohere、Jasper aiなどのスタートアップ企業は、この分野でアプリを開発しており、ブログ投稿、販売コンテンツ、デジタル広告、ウェブサイトのコピーなどの執筆を素早く容易にします。 分類 テキストを予め定義されたカテゴリに分類することは、教師あり学習の例です。クラスタリングという教師なし学習技術を用いることで、意味が似ているテキストを事前定義されたクラスなしでまとめることができます。 応答生成 応答生成は、サンプルの対話を使用して対話のフローを生成し、機械学習のアプローチを採用するアイデアです。ユーザーに提示される次の議論がモデルによって決定され、ユーザーの過去の応答と最も可能性の高い将来の会話を考慮に入れます。これを予測対話と呼びます。 テキストの生成 LLMの能力は、簡単な説明からテストを生成することで、「メタ能力」と見なされるかもしれません。ほとんどのLLMは生成の役割を果たします。フューショット学習データは、生成を大幅に向上させるだけでなく、データのキャスティングもデータの使用方法に影響を与えます。 知識応答 知識応答は、アプリケーションプログラミングインターフェース(API)のクエリや従来の知識ストアに頼ることなく、一般的なクロスドメインの問い合わせに対する応答を可能にする知識重視の自然言語処理(KI-NLP)の応用です。 知識重視の自然言語処理はウェブ検索ではなく、意味検索をサポートする知識ベースです。…
自然言語処理における転移学習:テキスト分類のための事前学習済みモデルの活用
この記事では、転移学習の概念について説明し、いくつかの人気のある事前学習済みモデルを探求し、テキスト分類に使用する方法を示します
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.