Learn more about Search Results Tensor Processing Units - Page 2

NLP、NN、時系列:Google Trendsのデータを使用して石油価格を予測することは可能ですか?

最初にWord2Vecを使用し、次にGoogleトレンドからGoogle検索の頻度をスクレイピングし、その後、時系列(フーリエ分解を経て)とKerasを使用したニューラルネットワークで予測を試みます...

「自然言語処理のマスタリングへの7つのステップ」

「自然言語処理(NLP)についてすべてを学びたいですか?ここでは、機械学習とPythonの基礎からTransformers、NLPの最近の進歩、それ以上までをサポートする7つのステップガイドをご紹介します」

農業におけるビジョン・トランスフォーマー | 革新的な収穫

はじめに 農業は常に人類文明の基盤であり、数十億人に生計と食料を提供してきました。技術の進歩により、農業の実践を向上させるための新たで革新的な方法が見つかっています。そのような進歩の一つが、Vision Transformers(ViTs)を使用して作物の葉の病気を分類することです。このブログでは、農業におけるビジョン・トランスフォーマーが、作物の病気の特定と軽減のための効率的かつ正確な解決策を提供することで、革命を起こしていることを探求します。 キャッサバ、またはマニオクまたはユカは、食事の主食から産業用途までさまざまな用途がある多目的な作物です。その耐久性と強靭さは、栽培条件の厳しい地域で不可欠な作物です。しかし、キャッサバの植物はさまざまな病気に対して脆弱であり、CMDとCBSDが最も破壊的なものの一部です。 CMDは、ホワイトフライによって伝播される複数のウイルスによって引き起こされ、キャッサバの葉に重度のモザイク症状を引き起こします。一方、CBSDは、2つの関連するウイルスによって引き起こされ、主に貯蔵根に影響を与え、食用に適さなくします。これらの病気を早期に特定することは、広範な作物被害を防ぐために重要であり、食料の安全保障を確保するために不可欠です。Vision Transformersは、自然言語処理(NLP)のために最初に設計されたトランスフォーマー・アーキテクチャの進化形であり、視覚データの処理に非常に効果的であることが証明されています。これらのモデルは、パッチのシーケンスとして画像を処理し、データ内の複雑なパターンと関係を捉えるために自己注意機構を使用します。キャッサバの葉の病気分類の文脈では、ViTsは感染したキャッサバの葉の画像を分析してCMDとCBSDを特定するために訓練されます。 学習成果 ビジョン・トランスフォーマーとそれらが農業にどのように適用され、特に葉の病気の分類においてどのように使用されるかを理解する。 トランスフォーマー・アーキテクチャの基本的な概念、自己注意機構などの理解し、これらが視覚データの処理にどのように適応されるかを学ぶ。 キャッサバの葉の病気の早期検出のために農業におけるビジョン・トランスフォーマー(ViTs)の革新的な利用方法を理解する。 スケーラビリティやグローバルなコンテキストなどのビジョン・トランスフォーマーの利点、および計算要件やデータ効率などの課題についての洞察を得る。 この記事は、Data Science Blogathonの一環として公開されました。 ビジョン・トランスフォーマーの台頭 コンピュータビジョンは、畳み込みニューラルネットワーク(CNN)の開発により、近年大きな進歩を遂げています。CNNは、画像分類から物体検出まで、さまざまな画像関連のタスクのための定番アーキテクチャとなっています。しかし、ビジョン・トランスフォーマーは、視覚情報の処理に新しい手法を提供する強力な代替手段として台頭しています。Google Researchの研究者たちは、2020年に「画像は16×16の単語に値する:スケールでの画像認識のためのトランスフォーマー」という画期的な論文でビジョン・トランスフォーマーを紹介しました。彼らは、もともと自然言語処理(NLP)のために設計されたトランスフォーマー・アーキテクチャをコンピュータビジョンの領域に適応させました。この適応により、新たな可能性と課題が生まれました。 ViTsの使用は、従来の方法に比べていくつかの利点を提供しています。それには以下のものがあります: 高い精度:ViTsは高い精度であり、葉の病気の信頼性のある検出と区別が可能です。 効率性:訓練された後、ViTsは画像を素早く処理できるため、現場でのリアルタイム病気検出に適しています。 スケーラビリティ:ViTsはさまざまなサイズのデータセットを処理できるため、さまざまな農業環境に適応できます。 汎化性:ViTsはさまざまなキャッサバの品種や病気のタイプに汎化することができ、各シナリオごとに特定のモデルが必要な必要性を減らします。 トランスフォーマー・アーキテクチャの概要 ビジョン・トランスフォーマーに入る前に、トランスフォーマー・アーキテクチャの核心的な概念を理解することが重要です。トランスフォーマーは、もともとNLPのために設計され、言語処理のタスクを革新しました。トランスフォーマーの主な特徴は、自己注意機構と並列化であり、より包括的な文脈理解とより高速なトレーニングを可能にします。…

TinyML アプリケーション、制限、およびIoT&エッジデバイスでの使用

過去数年間、人工知能(AI)と機械学習(ML)は、産業だけでなく学界でも人気と応用が急速に広まってきましたしかし、現在のMLとAIモデルには1つの大きな制限がありますそれは、望ましい結果を得るために膨大な計算と処理能力を必要とすることです[…]

Pythonでトレーニング済みモデルを保存する方法

実世界の機械学習(ML)のユースケースに取り組む際、最適なアルゴリズム/モデルを見つけることは責任の終わりではありませんこれらのモデルを将来の使用や本番環境への展開のために保存、保管、パッケージ化することが重要ですこれらのプラクティスはいくつかの理由から必要です:再強調すると、MLモデルの保存と保管...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us