Learn more about Search Results T5 - Page 2

T5:テキスト対テキスト変換器(パート1)

転移学習のパラダイムは、2つの主要なステージで構成されていますまず、大量のデータに対してディープニューラルネットワークを事前学習します次に、このモデルを微調整し(つまり、さらにトレーニングを行う)、より...

「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)

転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...

このAI論文は、デュアル1-Dヒートマップを使用したリアルタイムマルチパーソンポーズ推定の画期的な技術であるRTMOを紹介しています

姿勢推定とは、物体の位置と方向を空間上で決定することを含む分野であり、継続的に新しい手法を開発して精度とパフォーマンスを向上させてきました。清華深圳国際研究大学院、上海AIラボ、南洋理工大学の研究者たちは、最近、新しいRTMOフレームワークを開発することでこの分野に貢献しました。このフレームワークは、姿勢推定の精度と効率を向上させるポテンシャルを持ち、ロボット工学、拡張現実、仮想現実など、さまざまなアプリケーションに大きな影響を与える可能性があります。 RTMOは既存の手法における精度とリアルタイム性のトレードオフを解消するために設計されたワンステージの姿勢推定フレームワークです。RTMOは座標の分類と密な予測モデルを統合し、トップダウンアプローチと同等の精度を実現しながら、高速性を維持することで、他のワンステージの姿勢推定器を凌駕しています。 リアルタイムのマルチパーソン姿勢推定はコンピュータビジョンの課題であり、既存の手法は速度と精度のバランスをとるために支援が必要です。トップダウンアプローチまたはワンステージアプローチのいずれかには、推論時間または精度の制約があります。RTMOはワンステージの姿勢推定フレームワークであり、YOLOアーキテクチャと座標の分類を組み合わせています。RTMOは動的座標分類器と特別な損失関数を用いて課題を解決し、COCOでの高い平均適合度を維持しながら、リアルタイムのパフォーマンスを実現しています。 この研究では、YOLOのようなアーキテクチャを使用し、背骨とハイブリッドエンコーダを持つRTMOというリアルタイムのマルチパーソン姿勢推定フレームワークを提案しています。デュアル畳み込みブロックは各空間レベルでスコアとポーズ特徴を生成します。この手法は動的座標分類器と特別な損失関数を用いて、座標の分類と密な予測モデルの非互換性に対処しています。動的ビンエンコーディングを使用してビンごとの表現を作成し、クラス分類タスクにはガウスラベルスムージングと交差エントロピー損失を用いています。 RTMOは、高い精度とリアルタイム性を備えたワンステージの姿勢推定フレームワークであり、先端のワンステージ姿勢推定器よりも優れた性能を発揮し、同じ背骨を使用しておよそ9倍速く動作します。最大モデルのRTMO-lはCOCO val2017で74.8%のAPを達成し、単一のV100 GPUで秒あたり141フレームを実行します。異なるシナリオで、RTMOシリーズはパフォーマンスと速度で同等の軽量なワンステージ手法を上回り、効率と正確性を示しています。追加のトレーニングデータを使用することで、RTMO-lは最新の81.7の平均適合度を達成します。このフレームワークは、各キーポイントに対して頑強かつコンテキスト感知型の予測を容易にする空間的に正確なヒートマップを生成します。 https://arxiv.org/abs/2312.07526v1 まとめると、この研究の要点は以下の通りです: RTMOは高い精度とリアルタイム性を持つ姿勢推定フレームワークです。 RTMOはYOLOアーキテクチャ内で座標の分類をシームレスに統合しています。 RTMOは、座標ビンを使用した革新的な座標の分類技術を活用し、正確なキーポイントの位置特定を実現しています。 RTMOは、先端のワンステージ姿勢推定器を凌駕し、COCOで高い平均適合度を達成しながらも、大幅に高速です。 RTMOは難しいマルチパーソンのシナリオで優れた性能を発揮し、頑健な、コンテキスト感知型の予測のための空間的に正確なヒートマップを生成します。 RTMOは既存のトップダウンおよびワンステージのマルチパーソン姿勢推定手法のパフォーマンスと速度をバランスさせます。

指数平滑移動平均の直感的な説明

時間系列分析において、前の値を考慮に入れて、配列の傾向方向を理解する必要がしばしばあります配列内の次の値の近似を行うことができます...

「RustコードのSIMD高速化のための9つのルール(パート2)」

SIMDを使用してRustコードを高速化するための9つの基本ルールを探求してくださいcoresimdについて学び、最適化技術を学びながらパフォーマンスを7倍に向上させましょう

「高次元におけるデータの驚くべき挙動」

リチャード・ファインマンという有名な物理学者はかつて、「量子力学を理解している人なんていない」と述べていました彼のインタビュー「リチャード・ファインマンと一緒に想像しよう」という題名の中で彼は触れました

GPT-4.5 本当か嘘か?私たちが知っていること

テックコミュニティでは、OpenAIの最新バージョンであるGPT-4.5に関する可能性のリークが話題となっています。さまざまなソーシャルメディアプラットフォームで共有されたリークは、正確な場合、印象的な機能と価格体系を明らかにし、大型言語モデルの景色を根本から変える可能性があります。 GPT-4.5の概要 GPT-4.5は、OpenAIの有名なGPT LLMのアップグレードとされており、ビジョン、ビデオ、オーディオ、言語、3Dの分野でマルチモーダルの機能を導入するようです。Twitterユーザーのdaniel_nyugenxによって開始され、Redditのスレッドで議論されたリークは、このモデルの複雑な推論とクロスモーダル理解の可能性を強調しています。ただし、これらの主張の真正性は未確認のままであり、懐疑論も漂っています。 価格の詳細 リークされた草案によると、GPT-4.5は注目を集める新しい価格体系を持っています。このモデルは、入力トークン1Kあたり0.06ドル、出力トークン1Kあたり0.18ドルの価格であると推測されています。詳細な内訳には、GPT-4.5 64KやGPT-4.5オーディオ・スピーチなどのバリアントが含まれています。これらの価格は既存のGPT-4の料金を上回り、ユーザーや開発者に関する潜在的な影響についての議論が行われています。 コミュニティの反応と懐疑論 リークのニュースが広まるにつれて、テックコミュニティは反応が分かれています。一部の人々はこれを画期的な瞬間と見なし、コンテンツ制作の可能性についてのパラダイムシフトを期待しています。しかし、インターネット上での情報の捏造が容易であることを考慮すると、リークの信憑性について疑問を呈する声もあります。元のRedditのスレッドのコメントは、価格と草案の正確性についての不確定性を反映しています。 OpenAIの対応と将来の展望 OpenAIのCEOであるSam Altmanは後にXで「リーク」は本物ではないと確認しました。OpenAIはGPT-4.5をリリースするのか、直接GPT-5に移行するのかは不明です。次のモデルは、2023年3月14日にリリースされたGPT-4の後継となるでしょう。 GPT-3が2020年6月にリリースされてから、GPT-3.5は2022年3月に登場しました。一方、OpenAIは既にGPT-5の開発に取り組んでいます。7月には、AI企業がGPT5の商標申請を行い、音声やテキストに基づくAIベースのソフトウェア、音声をテキストに変換するソフトウェア、音声および音声認識を含んでいます。 11月、OpenAIのCEOであるSam Altmanは、Financial Timesに対してGPT-5の開発に取り組んでいると語りましたが、リリースのタイムラインを確定していません。 私たちの意見 推定されるGPT-4.5のリークの後、テックコミュニティは先進の進化する言語モデルの景色を興奮しながら、潜在的な進歩を考えていました。しかし、OpenAIのCEOであるSam Altmanはリークを早速否定し、その不正確性を強調しました。この事実は、推測される機能と価格に疑問を投げかけ、慎重なアプローチが求められることを示しています。GPT-4.5の可能性は不確実ですが、GPT-5の開発が進行中であるというAltmanの確認は、OpenAIの計画に興味を持つ人々にとって興味深いものとなっています。熱心なファンは公式なアップデートを待ちながら、進化する高度な言語モデルの世界を航海する際には、検証された情報に頼る重要性を強調しています。

「NYUとGoogle AIの研究者が、機械学習の先進的な演繹的推論のフロンティアを探る」

多くの割引ルールの使用とサブプルーフの構築により、証明の複雑さは医療診断や定理の証明などの多くの論理推論の課題において無限に発展することができます。巨大な証明領域のため、すべてのサイズの保証をカバーするためのデータを見つけることは実際的ではありません。したがって、基本的な証明から始めて、一般的な推論モデルはより複雑な証明へと拡張することができるはずです。 NYUとGoogle AIの研究者のチームは、インコンテキストの学習(ICL)と思考連鎖(CoT)のプロンプトを使用してトレーニングされた場合、LLMsが論理的な推論を行うことができることを実証しました。過去の研究では、モーダスポネンスなどの一部の割引ルールが主な焦点でした。評価もデモンストレーション中であり、テストケースはインコンテキストのデモンストレーションと同じ分布から抽出されたものです。 LLMsがデモンストレーションよりも洗練された証明を一般化できる能力は、ニューヨーク大学、Google、ボストン大学の研究者による新しい研究のテーマです。学者は証明を以下の3つの次元で分類します: デモンストレーションの各ステージで使用される前提の数。 証明を構成する一連の手順の長さ。 使用される割引ルール。 証明の総サイズはこれらの3つの次元の関数です。 このグループは、LLMsの一般的な論理的推論能力を評価するために、以前の研究を2つの重要な点で拡張しています。モーダスポネンス以外の割引ルールもマスターしているかどうかをテストします。彼らの推論能力は次の2つの方法でテストされます: 深度と幅の一般化では、インコンテキストの例よりも長い証明に対する推論が行われます。 構成的一般化では、1つの証明で多くの割引ルールを使用します。 彼らの研究によると、基本的な例を提示することで、論理的な推論タスクはインコンテキストの学習から最も利益を得ることができます。モデルが適合しすぎないようにするためには、インコンテキストの例に、証明において未知の割引の原則(例:ケースによる証明や反証による証明など)が含まれる必要があります。さらに、これらの例には迷彩要素も含まれている必要があります。 研究結果によると、CoTはLLMsにおける組成的証明へのOOB推論を引き起こすことができます。これらのLLMsには、スケールとトレーニング目標が異なるGPT-3.5 175B、PaLM 540B、LLaMA 65B、FLAN-T511Bが含まれています。この発見は驚くべきものであり、LLMsには組成的一般性がないとする文献の豊富さを考えると意外です。ICLは、インコンテキストのサンプルに対する監督学習とは異なる方法で一般化します。テスト例と同じ分布からのインコンテキストの例を与えることは明らかに悪影響です。たとえば、インコンテキストの例に特定の割引ルールが組み込まれている場合、研究者は時折、組成的証拠へのより高度な一般化が見られました。 事前学習では、モデルに仮説的なサブプルーフを作成させることはありません。具体的な例がないと、LLMsは特定の割引ルール(例:ケースによる証明や反証による証明など)を一般化することはできません。モデルのサイズとパフォーマンスの関係は弱いです。指導の調整とより長い事前学習により、より小さなモデル(最小ではなく比較可能なもの)がより大きなモデルと競合することができます。 ICLとCoTのトリガリングプロセスをさらに理解するために、研究者は今後の調査において重要な領域に注目しています。彼らは、最良のインコンテキストの例が、テスト例自体とは異なる分布から得られることを発見しました。ベイズ推論と勾配降下はこれを考慮していません。彼らは、テストケースがやや洗練されているにもかかわらず、よりシンプルな例がより良く機能するかどうかを調査することに興味を持っています。具体的なインスタンスからの外挿をさらに特徴づけるためには、追加の研究が必要です。

リトリーバル・オーグメンテッド・ジェネレーションを使用して、安定した拡散プロンプトを改善しましょう

テキストから画像を生成することは、メディアやエンターテイメント、ゲーム、ECサイトの商品ビジュアライゼーション、広告やマーケティング、建築設計やビジュアライゼーション、芸術創作、医療画像など、さまざまな分野で応用される急速に成長している人工知能の分野ですStable Diffusionは、数秒で高品質な画像を作成する力を与えるテキストから画像へのモデルです11月には[…]

このAI論文は、TreeOfLife-10Mデータセットを活用して生物学と保護のコンピュータビジョンを変革するBioCLIPを紹介しています

生態学、進化生物学、生物多様性など、多くの生物学の分野が、研究ツールとしてデジタルイメージおよびコンピュータビジョンを活用しています。現代の技術は、博物館、カメラトラップ、市民科学プラットフォームから大量の画像を分析する能力を大幅に向上させました。このデータは、種の定義、適応機構の理解、個体群の構造と豊富さの推定、生物多様性の監視と保全に活用することができます。 とはいえ、生物学的な問いにコンピュータビジョンを利用しようとする際には、特定のタスクに適したモデルを見つけて訓練し、十分なデータを手動でラベリングすることは、依然として大きな課題です。これには、機械学習の知識と時間が大量に必要とされます。 オハイオ州立大学、マイクロソフト、カリフォルニア大学アーヴァイン校、レンセラーポリテクニック研究所の研究者たちは、この取り組みで生命の木の基礎的なビジョンを構築することを調査しています。このモデルは、実際の生物学的なタスクに一般的に適用できるように、以下の要件を満たす必要があります。まず、一つのクラドだけでなく、様々なクラドを調査する研究者に適用できる必要があります。そして理想的には、生命の木全体に一般化できることが求められます。さらに、生物学の分野では、同じ属内の関連種や、適応度の向上のために他の種の外観を模倣するなど、視覚的に類似した生物と遭遇することが一般的です。生命の木は生物を広義のグループ(動物、菌類、植物など)および非常に細かいグループに分類しているため、このような細かな分類の精度が重要です。最後に、生物学におけるデータ収集とラベリングの高いコストを考慮して、低データの状況(例:ゼロショットまたはフューショット)で優れた結果が得られることが重要です。 数億枚の画像で訓練された現行の汎用ビジョンモデルは、進化生物学や生態学に適用する際に十分な性能を発揮しません。しかし、これらの目標はコンピュータビジョンにとって新しいものではありません。研究者たちは、生物学のビジョン基盤モデルの作成には2つの主な障害があることを特定しています。まず、既に利用可能なデータセットは、サイズ、多様性、またはラベルの精度の点で不十分ですので、より良い事前トレーニングデータセットが必要です。さらに、現在の事前トレーニングアルゴリズムは3つの主要な目標に適切に対応していないため、生物学の独特な特性を活用したよりよい事前トレーニング方法を見つける必要があります。 これらの目標とそれらを実現するための障害を念頭に置いて、チームは以下を提示しています: TREEOFLIFE-10Mという大規模なML対応の生物学画像データセット BIOCLIPはTREEOFLIFE-10M内の適切な分類群を用いてトレーニングされた生命の木を基盤としたビジョンベースのモデルです。  TREEOFLIFE-10Mは、ML対応の広範な生物学画像データセットです。生命の木において454,000の分類群をカバーする10,000,000以上の写真が含まれており、研究者たちによって編成され、最大のML対応生物学画像データセットが公開されました。2.7百万枚の写真は、最大のML対応生物学画像コレクションであるiNat21を構成しています。iNat21やBIOSCAN-1Mなどの既存の高品質データセットもTREEOFLIFE-10Mに組み込まれています。TREEOFLIFE-10Mのデータの多様性の大部分は、新たに選択された写真が含まれているEncyclopedia of Life(eol.org)から得られています。TREEOFLIFE-10Mのすべての画像の分類階層および上位の分類順位は、可能な限り注釈が付けられています。TREEOFLIFE-10Mを活用することで、BIOCLIPや将来の生物学モデルをトレーニングすることができます。 BIOCLIPは、視覚に基づく生命の木の表現です。TREEOFLIFE10Mのような大規模なラベル付きデータセットを用いてビジョンモデルをトレーニングする一般的で簡単なアプローチは、監視付き分類ターゲットを使用して画像から分類指数を予測することを学ぶことです。ResNet50やSwin Transformerもこの戦略を使用しています。しかし、このアプローチは、分類群が体系的に関連している複雑なタクソノミーのシステムを無視し、活用していません。したがって、基本的な監視付き分類を使用してトレーニングされたモデルは、未知の分類群をゼロショット分類することができない可能性があり、トレーニング時に存在しなかった分類群に対してもうまく一般化することができないかもしれません。その代わりに、チームは、BIOCLIPの包括的な生物学的タクソノミーとCLIPスタイルの多モーダルコントラスティブ学習を組み合わせる新しいアプローチに従っています。CLIPコントラスティブ学習目的を使用することで、彼らは分類群の階層をキングダムから最も遠い分類群ランクまでフラット化して、分類名として知られる文字列に関連付けることができます。BIOCLIPは、可視化できない分類群の分類名を使用する際にも、ゼロショット分類を行うことができます。 チームは、混合テキスト型のトレーニング技術が有益であることを提案し、示しています。これは、分類名からの一般化を保ちつつ、複数のテキストタイプ(例:科学名と一般名)を組み合わせたトレーニング中に柔軟性を持つことを意味します。たとえば、ダウンストリームの使用者は一般的な種名を使用し続けることができ、BIOCLIPは非常に優れたパフォーマンスを発揮します。BIOCLIPの徹底的な評価は、植物、動物、昆虫を対象とした10の細かい画像分類データセットと、トレーニング中には使用されなかった特別に編集されたRARE SPECIESデータセットに基づいて行われています。BIOCLIPは、CLIPとOpenCLIPを大きく凌ぎ、few-shot環境では平均絶対改善率17%、zero-shot環境では18%の成績を収めました。さらに、その内在的な分析はBIOCLIPのより優れた一般化能力を説明することができます。これは、生物分類学的階層を遵守した階層的表現を学んでいることを示しています。 BIOCLIPのトレーニングは、数十万の分類群に対して視覚表現を学ぶためにCLIPの目的を利用しているということにもかかわらず、チームは分類に焦点を当てたままです。今後の研究では、BIOCLIPが細かい特徴レベルの表現を抽出できるよう、inaturalist.orgから100百万枚以上の研究用写真を取り込み、種の外見のより詳細なテキスト記述を収集する予定です。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us