Learn more about Search Results Shapely - Page 2
- You may be interested
- イメージの意味的なセグメンテーションに...
- 紙からピクセルへ:デジタルファックスが...
- 「スノーフレーク vs データブリックス:...
- 「AIプロジェクトはどのように異なるのか」
- ジェンAIに関するトップ10の研究論文
- ビッグデータアプリケーションのクラウド...
- ゲーム業界の皆様へ!もう奇妙な鏡は不要...
- 「すべてのビジネスが生成的AIを受け入れ...
- DORSalとは 3Dシーンの生成とオブジェクト...
- データパイプラインのテスト計画を進化させる
- 「Hugging Face AutoTrainを使用して、LLM...
- オートジェン(AutoGen)は驚くべきもので...
- ロボキャット:自己改善型ロボティックエ...
- 既存のLLMプロジェクトをLangChainを使用...
- 「中国が新しい生成AIの安全性を判断する...
「あらゆるプロジェクトに適した機械学習ライブラリ」
「機械学習プロジェクトで使用できる多くのライブラリが存在しますプロジェクトで使用するライブラリについての包括的なガイドを探索してください」
ニューヨーク市の可視化
「PythonとPlotlyを使用して、NYCのオープンデータプラットフォームからデータを活用するジオデータの構築、Wifiヒートマップ、そしてセントラルパークの住人について学びましょう」
ジオスペーシャルデータ分析のための5つのPythonパッケージ
この記事では、地理空間解析の重要性について説明し、地理空間データから貴重な洞察を効果的に処理し可視化するための5つの必須のPythonパッケージを紹介しています
「Pythonを使用してネパールの地形図を作成する」
イントロダクション あなたの国の地勢が経済や政治の発展にどのような影響を与えるのか、気になったことはありませんか?等高線を使用して地球の表面を可視化する地形図は、これらの疑問に答えるのに役立ちます!私たちはPythonを使用して、興味深い地形環境を持つネパールのための地形図を作成します。国の地形を記述する地理空間データを読み取り、このデータを解釈し、可視化する方法を学びます。結果として得られる地図は、国の地形が経済や政治の発展にどのような影響を与えるかを理解するために、非常に詳細な地方レベルで他の関心のあるデータと組み合わせることができます。このブログ記事では、政策や民間セクターの発展に関する情報を提供できる非常に興味深いツールを生成する方法を教えます! 学習目標 デジタル標高データのデータ分析技術を習得する。 Pythonで地理空間データと関連する分析ツールの使用方法を学ぶ。 マッピング技術の知識を習得する。 効果的なデータ可視化のためのスキルを開発する。 不平等と貧困における標高の重要性を理解する。 この記事は、データサイエンスのブログマラソンの一部として公開されました。 トポグラフィックマップとは何ですか? トポグラフィックマップは、等高線を使用して地球の表面を可視化する地図です。トポグラフィックマップは、見知らぬ地形をナビゲートするための貴重なツールであり、都市計画や災害管理の入力としても役立ちます。これらの地図は、インフラ開発に関する政策や民間セクタープロジェクトの空間的な文脈を理解するために頻繁に使用され、自然災害の脆弱な地域や教育、医療、インフラなどの必要なサービスへのアクセスが制限されている地域を特定するためにも使用されます。最終的に、これらの地図は、エビデンスに基づいた意思決定のための入力として機能することができます。このブログ記事では、興味深い地形環境を持つネパールのための地形図を作成するためにPythonを使用します。 データの説明 私たちの地図を生成するために、私たちはアメリカ合衆国地質調査所(USGS)が公開したデータに頼ることになります。USGSは、自然資源、地質学、地理学、水資源、自然災害に関するデータや研究を生成するアメリカ連邦政府の科学機関です。彼らのデータページにアクセスするには、Googleで「USGSデータ」と入力するか、彼らのEarth Explorerにリンクするリンクをクリックします。Earth Explorerは、地球科学データの検索、アクセス、ダウンロードを可能にするオンラインツールおよびデータポータルです。データをフルに使用するためにはアカウントを設定し、ログインする必要があります。 データのダウンロード このブログ記事では、ネパールを例に挙げます。ネパールは世界でも最も困難で興味深い地形を持つ国の一つです。8,000メートル以上の山のうち8つがネパールにあります(Trekking Trail Nepal)、そしてこの国は山岳地帯、丘陵地帯、テライ(平原)の3つの非常に異なる地形地域に分かれています(DHS)。これらの特徴は、国をユニークで興味深いものにしていますが、一部の研究では、ネパールの地形が国を接続すること、人口に必要なサービスを提供すること、持続可能な発展の道にリスクと障壁を課すことが困難であると示しています。 このため、検索条件でネパールをフィルタリングします。下の画像に示されているように、ネパールを選択したら、興味のあるデータセットを選択します。データセットタブをクリックし、デジタル標高を選択してください。デジタル標高データにはいくつかのオプションがありますが、いくつかのデータセットを使用することができます。私たちはGlobal Multi-resolution Terrain Elevation Data…
「Codey:Googleのコーディングタスクのための生成型AI」
イントロダクション OpenAIが導入されて以来、彼らのトップクラスのGPTフレームワークをベースにした数々の生成AIおよび大規模言語モデルがリリースされてきました。その中には、ChatGPTという彼らの生成型対話AIも含まれています。対話型言語モデルの成功に続いて、開発者たちは常に、開発者がアプリケーションのコーディングを開発または支援することのできる大規模言語モデルを作成しようとしています。OpenAIを含む多くの企業が、それらのプログラミング言語を知っているLLM(Large Language Models)によって開発者がアプリケーションをより速く構築できるようにするために、これらのLLMを研究し始めています。GoogleはPaLM 2のファインチューニングモデルであるCodeyを開発しました。Codeyはさまざまなコーディングタスクを実行できるモデルです。 また、こちらも読んでみてください:GoogleがGPT-4効果に対処するためのPaLM 2 学習目標 Codeyの構築方法の理解 Google Cloud PlatformでのCodeyの使用方法の学習 Codeyが受け入れられるプロンプトのタイプの理解 Codey内のさまざまなモデルの探索と関与 Codeyを活用して作業可能なPythonコードを生成する Codeyがコードのエラーを特定して解決する方法のテスト この記事は、データサイエンスブログマラソンの一環として公開されました。 Codeyとは何ですか? Codeyは、最近Googleによって構築およびリリースされた基礎モデルの一つです。CodeyはPaLM 2 Large Language Modelに基づいています。CodeyはPaLM 2…
スターコーダーでコーディングアシスタントを作成する
ソフトウェア開発者であれば、おそらくGitHub CopilotやChatGPTを使用して、プログラミングのタスクを解決したことがあるでしょう。これらのタスクには、コードを別の言語に変換したり、自然言語のクエリ(「N番目のフィボナッチ数を見つけるPythonプログラムを書いてください」といったもの)から完全な実装を生成したりするものがあります。これらの独自のシステムは、その機能には感動的ですが、一般にはいくつかの欠点があります。これらには、トレーニングに使用される公開データの透明性の欠如や、ドメインやコードベースに適応することのできなさなどがあります。 幸いにも、今はいくつかの高品質なオープンソースの代替品があります!これには、SalesForceのPython用CodeGen Mono 16B、またはReplitの20のプログラミング言語でトレーニングされた3Bパラメータモデルなどがあります。 新しいオープンソースの選択肢としては、BigCodeのStarCoderがあります。80以上のプログラミング言語、GitHubの問題、Gitのコミット、Jupyterノートブックから1兆トークンを収集した16Bパラメータモデルで、これらはすべて許可されたライセンスです。エンタープライズ向けのライセンス、8,192トークンのコンテキスト長、およびマルチクエリアテンションによる高速な大規模バッチ推論を備えたStarCoderは、現在、コードベースのアプリケーションにおいて最も優れたオープンソースの選択肢です。 このブログポストでは、StarCoderをチャット用にファインチューニングして、パーソナライズされたコーディングアシスタントを作成する方法を紹介します! StarChatと呼ばれるこのアシスタントには、次のようないくつかの技術的な詳細があります。 LLMを会話エージェントのように動作させる方法。 OpenAIのChat Markup Language(ChatMLとも呼ばれる)は、人間のユーザーとAIアシスタントの間の会話メッセージに対する構造化された形式を提供します。 🤗 TransformersとDeepSpeed ZeRO-3を使用して、多様な対話のコーパスで大きなモデルをファインチューニングする方法。 最終結果の一部を見るために、以下のデモでStarChatにいくつかのプログラミングの質問をしてみてください! デモで使用されたコード、データセット、およびモデルは、以下のリンクで見つけることができます。 コード: https://github.com/bigcode-project/starcoder データセット: https://huggingface.co/datasets/HuggingFaceH4/oasst1_en モデル: https://huggingface.co/HuggingFaceH4/starchat-alpha 始める準備ができたら、まずはファインチューニングなしで言語モデルを会話エージェントに変換する方法を見てみましょう。…
郵便番号レベルでの地理空間データの操作
一部の国では、郵便番号は地域ではなく、ポイントやルートで表されます例えば、カナダの郵便番号の最後の3桁は、地域配送ユニットに対応していて、それは一つの家に対応するかもしれません...
データサイエンティストのためのジオコーディング
この記事では、データサイエンスパイプラインの一部としてジオコーディングを紹介しています楽しく興味深い例を用いて、手動とAPIベースのジオコーディングをカバーしています
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.