Learn more about Search Results RT-2 - Page 2
- You may be interested
- このAI論文は、大規模な言語モデルを最適...
- 「季節性モデルの8つの技術」
- メトリックは欺くことができますが、目は...
- 「オフィスの空気はどれほど安全ですか?...
- データサイエンス入門:初心者向けガイド
- 「SQLにおけるSUBSTRING関数とは何ですか...
- 言語モデルと仲間たち:ゴリラ、HuggingGP...
- パンダのプレイブック:7つの必須の包括的...
- 「PEARLと出会ってください – 顧客...
- 「不確定性pyと混沌pyを用いた多項式混沌...
- Transcript AIコンテンツの生成を検出する
- 「PythonとMatplotlibを使用して米国のデ...
- 「AIを使ってGmailの受信トレイをクリアす...
- 『今日、企業が実装できる5つのジェネレ...
- 「Google DeepMindが大規模な言語モデルを...
「LangChainとは何ですか?利用事例と利点」
LangChainはプログラマが大規模言語モデルを用いてアプリケーションを開発するための人工知能フレームワークです。ライブラリはPythonとTypeScript / JavaScriptで利用でき、開発者にとって多目的に活用できるものとなっています。テンプレートは参照アーキテクチャを提供し、アプリケーションの出発点として使用できます。LangChainフレームワークは開発から製品化、展開まで、アプリケーションのライフサイクルを効率化します。LangChainは、ステップごとに情報を求めることでチャットボットや質問応答システムなどのアプリケーションを構築するために開発者が利用することができます。また、開発者同士がお互いを支援しアイデアを共有するコミュニティも提供されています。 https://www.langchain.com/ 用途 LangChainには、自然言語を使用してSQLデータベースと対話するための機能があります。これにより、より人間らしい方法で質問したりコマンドを与えたりすることができ、LangChainがそれをSQLクエリに変換します。たとえば、先週のトップパフォーマンスを発揮した店舗を知りたい場合、LangChainにSQLクエリを生成してもらうことができます。 LangChainは、複雑なSQLクエリを手動で書くことなくデータベースとやり取りすることができる便利な機能を持っています。データベースとの会話のような感覚で、必要な情報を簡単に取得することができます。この機能により、データベースのデータに基づいて質問に答えることができるチャットボットの作成や、データ分析のためのカスタムダッシュボードの作成など、可能性が広がります。SQLデータベースに格納されたエンタープライズデータを扱う開発者にとって強力なツールです。 https://python.langchain.com/assets/images/sql_usecase-d432701261f05ab69b38576093718cf3.png 特徴 1. データの認識:LangChainは外部のデータソースと接続することで、言語モデルとの対話をより興味深くコンテキスト豊かなものにすることができます。 2. 代行的:LangChainを使用することで、言語モデルは単なる応答者にとどまらず、環境と対話することができます。これにより、アプリケーションが生き生きとしたダイナミックなものになります。 3. 簡単な統合:LangChainは使いやすく、拡張可能な標準化されたインターフェースを提供します。それはまるでアプリケーション用の共通言語を持っているようなものです。 4. スムーズな会話:効率的にプロンプトを処理することにより、言語モデルとの会話がスムーズで効果的に行えます。 5. オールインワンハブ:貴重なリソースを一箇所にまとめることで、開発者が必要なものを見つけてLangChainアプリケーションを作成し、公開するのが容易になります。 6. 見て学ぶ:LangChainは開発者が作成したチェーンとエージェントを視覚化することができます。異なるアイデア、プロンプト、モデルで実験することができます。 https://miro.medium.com/v2/resize:fit:1100/format:webp/1*05zEoeNU7DVYOFzjugiF_w.jpeg 利点 1.…
ラストでクロスプラットフォームのTFIDFテキストサマライザーを構築する
NLPツールとユーティリティはPythonエコシステムで大幅に成長し、開発者はすべてのレベルで高品質な言語アプリをスケールさせることができるようになりましたRustはNLPにおいて比較的新しい導入された言語であり、...
一緒にAIを学びましょう−Towards AIコミュニティニュースレター#5
おはようございます、AI愛好家の皆さん!今週のポッドキャストのエピソードは必聴で、これまでの24エピソードの中でも一番優れていますグレッグは驚くべき洞察を共有し、起業家だけでなく関係者にも関連する情報です...
すべての開発者が知るべき6つの生成AIフレームワークとツール
この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください
「QLoRAを使ってLlama 2を微調整し、AWS Inferentia2を使用してAmazon SageMakerに展開する」
この記事では、パラメータ効率の良いファインチューニング(PEFT)手法を使用してLlama 2モデルを微調整し、AWS Inferentia2上でファインチューニングされたモデルを展開する方法を紹介します AWS Neuronソフトウェア開発キット(SDK)を使用してAWS Inferentia2デバイスにアクセスし、その高性能を活用しますその後、[…]の動力を得るために、大きなモデル推論コンテナを使用します
最高のAWSコース(2024年)
クラウドコンピューティングのスキルを向上させるための最高のAWSコースを見つけましょうアーキテクチャ、DevOps、およびキャリア構築のコースで基礎を学び、認定試験の準備をし、実践的な経験を積みましょう
『ジェネラティブAIの電力消費の定量化』
更新日:2023年12月11日—アナウンスメントにおいてAMDが予想する売上高の倍増を反映するため、アナウンスメントの付録に改訂された分析Generative AIにはグラフィックス処理ユニット(GPU)が必要であり、それらはたくさん必要とされます計算が…
「エッセンシャルAI、シリーズAラウンドで5650万ドル調達」
スタートアップ企業のEssential AIは、56.5百万ドルのシリーズAを調達し、エンタープライズブレインの構築を目指していますGoogleのベテランであるAshish VaswaniとNiki Parmarによって設立されたこのスタートアップは、人間と機械の間に架け橋を築くことを約束するAI製品のフルスタックに取り組んでいますYahoo!によると...
「RAGAsを使用したRAGアプリケーションの評価」
「PythonにおいてRAGAsフレームワークを使って、検索および生成コンポーネントを個別に評価するための検索強化生成(RAG)システムの評価」
「RustコードのSIMDアクセラレーションのための9つのルール(パート1)」
「SIMDを使用してRustコードを高速化するための9つの基本ルールを探索してくださいcoresimd、最適化テクニック、およびパフォーマンスを7倍に向上させる方法を学びましょう」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.