Learn more about Search Results Bloomberg - Page 2
- You may be interested
- Learning to build—Towards AI コミュニテ...
- (「AI ga hontōni watashitachi o zenmets...
- 「Amazon Bedrockへのプライベートアクセ...
- 「Langchainのチャットボットソリューショ...
- 「データは言語モデルの基盤です」
- 「Google の CEO Sundar Pichai は AI を...
- デシは、コード生成のためのオープンソー...
- BERTopic(バートピック):v0.16の特別さ...
- あなたの次の夢の役割(2023年)を見つける...
- AIが想像を絶する抗体を作成します:LabGe...
- 「AIが家庭用ロボットの計画時間を半分に...
- 分類器のアンサンブル:投票分類器
- 「リアルタイムデータのためのPythonでのC...
- Hugging Face Unity APIのインストールと...
- 視覚のない人のための音声ビジョン
「修正策にもかかわらず、ハッカーたちがシトリックスソフトウェアの欠陥を悪用しています」
「Citrix Bleed」というCitrix Systemsソフトウェアの重大な欠陥は、政府支援のハッカーや重要なグループによって悪用されています
AppleはiPhoneとAndroid間でのテキストのやり取りを容易にする予定です
Appleは、来年、テキストメッセージングがiOSデバイスとAndroidデバイスの間でスムーズに動作するようにするための技術標準を採用する予定です
「ホログラムがフィリピンのマルコス氏がシンガポールで話すことを可能にし、アメリカを訪れています」
カリフォルニアでスピーチを行った後、フィリピンのマルコス・ジュニア大統領は、水曜日にシンガポールでホログラムを使用して姿を現しました
(いぜん より も しょうさいな じょうほう が しゅうしゅう されている ウェブ えつらん データ)
「ウェブ閲覧データは、非営利のアイリッシュ市民自由協議会による報告書によると、これまで思われていたよりも詳細に収集され、販売されている」ということが明らかになりました
「大規模言語モデルによってプログラミングは終わるのか?」
「OpenAIのGPT-4 TurboやCopilotなど、LLMの進化を探求し、プログラミングやクリエイティブ産業に与える変革的な影響を体験してみましょう」
『トランスフォーマーの位置符号化の解説』
元のトランスフォーマーアーキテクチャでは、位置エンコーディングが入力と出力の埋め込みに追加されました位置エンコーディングは、トランスフォーマーにおいて重要な役割を果たし、それらが…
「ユーレカ!NVIDIAの研究によるロボット学習の新たな進展」
ロボットに複雑なスキルを教えることができるNVIDIA Researchによって開発された新しいAIエージェントは、ロボットの手にペン回しのテクニックを迅速に演じることを学習しました。これは人間と同じくらいのスキルです。 上記のビデオで見られる驚くべき手品は、ユーレカによってほぼ30のタスクを学習させることによって達成されました。ユーレカは報酬アルゴリズムを自律的に書き、ボットをトレーニングします。 ユーレカは、引き出しやキャビネットを開ける、ボールを投げてキャッチする、はさみを使うなどのタスクもロボットに教えました。 今日発表されたユーレカの研究には、論文とこのプロジェクトのAIアルゴリズムが含まれており、開発者はNVIDIA Isaac Gymを使用して実験することができます。これは強化学習研究のための物理シミュレーションリファレンスアプリケーションです。アイザックジムは、オープンUSDフレームワークに基づいた3Dツールやアプリケーションを構築するための開発プラットフォームであるNVIDIA Omniverse上に構築されています。ユーレカ自体は、GPT-4大規模言語モデルによって動作します。 「ここ10年で強化学習は素晴らしい成果を上げてきましたが、報酬設計などの課題はまだ存在します。それは試行錯誤のプロセスです。」と、NVIDIAのAI研究の上級ディレクターであるアニマ・アナンドクマールは語りました。彼女はまた、ユーレカの論文の共著者でもあります。「ユーレカは、困難なタスクを解決するために生成的学習と強化学習の手法を統合する新しいアルゴリズムを開発するための第一歩です。」 AIがロボットをトレーニング 論文によると、ユーレカが生成する報酬プログラムは、ロボットの試行錯誤学習において、専門家によって作成されたものよりも80%以上のタスクで優れたパフォーマンスを発揮しています。これにより、ボットの平均パフォーマンスが50%以上向上しています。 https://blogs.nvidia.com/wp-content/uploads/2023/10/franka_cabinet.mp4 ユーレカによって引き出しを開けるように学習されたロボットアーム。 このAIエージェントは、ロボットに強化学習のためのソフトウェアコードを生成するためにGPT-4 LLMと生成的AIを活用しています。具体的なタスクの促しや事前定義された報酬テンプレートは必要ありません。また、開発者のビジョンにより正確に合わせて報酬を修正するための人間のフィードバックをすぐに組み込むことができます。 Isaac GymのGPUアクセラレーションされたシミュレーションを使用することにより、ユーレカは効率的なトレーニングのために大規模な報酬候補の品質を迅速に評価することができます。 ユーレカは、トレーニング結果からキーとなる統計情報の要約を作成し、LLMに報酬関数生成の改善を指示します。このように、AI自体が自己改善しています。ユーレカは、四足歩行、二足歩行、クアッドローター、器用な手、共同作業者のアームなど、あらゆる種類のロボットにあらゆる種類のタスクを実行することを教えてきました。 この研究論文では、20のユーレカによるトレーニングされたタスクについて、ロボットの手が幅広い複雑な操作スキルを示す必要があるオープンソースの手先器用さベンチマークに基づく詳細な評価が提供されています。 NVIDIA Omniverseを使用して生成された視覚化で、9つのIsaac Gym環境の結果が紹介されています。 https://blogs.nvidia.com/wp-content/uploads/2023/10/humanoid.mp4 ユーレカを通じて走りの足技を学ぶヒューマノイドロボット。…
「生成AIの未来はエッジです」
「ChatGPTとジェネレーティブAIの登場は、技術史における画期的な瞬間であり、インターネットやスマートフォンの誕生と同様に評価されています ジェネレーティブAIは知的な対話を展開でき、試験に合格でき、複雑なプログラムやコードを生成でき、目を引く画像やビデオを作成する能力により、無限の可能性を示しています」
「ベクターデータベースを使用してLLMアプリを作成する方法」
イントロダクション 人工知能の領域では、OpenAIのGPT-4、AnthropicのClaude 2、MetaのLlama、Falcon、GoogleのPalmなど、Large Language Models(LLMs)やGenerative AIモデルが問題解決の方法を革新しています。LLMsはディープラーニングの技術を使用して、自然言語処理のタスクを実行します。この記事では、ベクトルデータベースを使用してLLMアプリを構築する方法を紹介します。おそらくAmazonの顧客サービスやFlipkartのDecision Assistantのようなチャットボットと対話したことがあるかもしれません。それらは人間に近いテキストを生成し、実際の会話と区別がつきにくいインタラクティブなユーザーエクスペリエンスを提供します。しかし、これらのLLMsは最適化する必要があります。特定のユースケースに対して非常に関連性が高く具体的な結果を生成するようにするためには。 例えば、Amazonの顧客サービスアプリに「Androidアプリで言語を変更する方法は?」と尋ねた場合、正確にこのテキストでトレーニングされていないため、答えることができないかもしれません。ここでベクトルデータベースが助けになります。ベクトルデータベースは、ドメインのテキスト(この場合はヘルプドキュメント)と、注文履歴などを含むすべてのユーザーの過去のクエリを数値の埋め込みとして保存し、リアルタイムで似たようなベクトルの検索を提供します。この場合、このクエリを数値ベクトルにエンコードし、ベクトルデータベース内で類似のベクトルを検索し、最も近い隣人を見つけるために使用します。このようなヘルプを通じて、チャットボットはユーザーを正しくAmazonアプリの「言語設定の変更」セクションに案内できます。 学習目標 LLMsの動作原理、制約、およびベクトルデータベースの必要性について学ぶ。 埋め込みモデルの紹介と、アプリケーションでのエンコードと使用方法について学ぶ。 ベクトルデータベースとそれがLLMアプリケーションアーキテクチャの一部である方法について学ぶ。 ベクトルデータベースとTensorFlowを使用してLLM/Generative AIアプリケーションをコーディングする方法を学ぶ。 この記事はデータサイエンスブログマラソンの一環として公開されました。 LLMsとは何ですか? Large Language Models(LLMs)は、自然言語を処理し理解するためにディープラーニングアルゴリズムを使用する基本的な機械学習モデルです。これらのモデルは大量のテキストデータでトレーニングされ、言語のパターンやエンティティの関係を学習します。LLMsは、言語の翻訳、感情分析、チャットボットの会話などのさまざまなタイプの言語タスクを実行することができます。彼らは複雑なテキストデータを理解し、エンティティとそれらの間の関係を識別し、統率的で文法的に正確な新しいテキストを生成することができます。 LLMsについてもっと詳しく読む。 LLMsはどのように動作するのですか? LLMsは大量のデータ(しばしばテラバイト、さらにはペタバイト)を使用してトレーニングされ、数十億または数兆のパラメータを持ち、ユーザーのプロンプトやクエリに基づいて関連する応答を予測および生成することができます。入力データをワード埋め込み、自己注意層、およびフィードフォワードネットワークを通じて処理し、意味のあるテキストを生成します。LLMアーキテクチャについてもっと読むことができます。 LLMsの制約 LLMsは非常に高い精度で応答を生成するように見えますが、多くの標準化テストでは人間を超える結果を示すことがありますが、それでもこれらのモデルには制約があります。まず第一に、彼らは自身のトレーニングデータに頼ることだけで推論を行い、データ内の特定の情報や現在の情報が欠けているかもしれません。これにより、モデルが誤ったまたは異常な応答を生成することがあります(「幻覚」とも言われます)。これを軽減するための取り組みが継続中です。第二に、モデルはユーザーの期待に合致するように振る舞ったり応答するとは限りません。…
「最大AIパフォーマンス:最新のNVIDIA GPUによって高速化されたAdobeの最新アップデートは、何百万ものクリエイターのワークフローを改善します」
生成AIは、多くの産業で創造的な人々が思い描いたアイデアを類まれな速さで実現するのに役立っています。 この技術は、Adobe MAXで展示されます。10月12日(木曜日)まで、対面とバーチャルで行われます。Adobe MAXをご覧ください。 Adobeは、Adobe Fireflyのリリースにより、創作者たちの手に生成AIの力を与えています。NVIDIAのGPUを使用して、Adobeは芸術家やその他の人々が生成AIを加速させるための新たな機会をもたらし、数百万人のユーザー向けに生成AIの拡張を解放しています。Fireflyは現在、スタンドアロンのアプリとして利用可能であり、他のAdobeアプリとも統合されています。 Adobe Premiere Pro、Lightroom、After Effects、Substance 3Dの最新のアプリのアップデートにより、クリエイターに新たなAI機能がもたらされました。さらに、GeForce RTXおよびNVIDIA RTXのGPUは、これらのアプリやAIエフェクトを高速化し、膨大な時間の節約をもたらします。 ビデオエディターは、最適化された話し声の品質を向上させるAIのEnhance Speech(ベータ版)機能を活用したり、RTX GPUでのPremiere ProでのARRIRAWカメラのオリジナルデジタルフィルムクリップのGPUアクセラレーションデコードで、Apple MacBook Pro 16 M2 Maxと比較して最大60%高速化される点を活用したりすることができます。さらに、After Effectsで利用できる次世代Roto Brush(バージョン3.0)機能により、改善されたロトスコーピングの品質も活用できます。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.