Learn more about Search Results Anaconda - Page 2
- You may be interested
- 「データ分析での創発的AIの解放」
- このAI論文では、ChatGPTに焦点を当て、テ...
- 「取得した文書の圧縮は言語モデルのパフ...
- Amazon SageMakerで@remoteデコレータを使...
- 神経刺激のための4Dプリント技術
- 「推薦システムにおける二つのタワーモデ...
- 「AIチャットボットが$1未満で数分でソフ...
- ギアアップしてゲームオン:ギアボックス...
- 線形回帰と勾配降下法
- 「NVIDIA Studio内のコンテンツ作成が、新...
- 大規模言語モデル(LLM)と潜在ディリクレ...
- 「マイクロソフトのシニアデータサイエン...
- プラグ可能な回折ニューラルネットワーク...
- 2023年のトップ5の建築学校
- 「このAI研究は、合成的なタスクにおけるT...
「データサイエンスを利用した需要ベースのホテルルーム価格設定をMLOpsで実装する」
イントロダクション COVID-19の間、ホスピタリティ産業は売上の大幅な減少を経験しました。したがって、人々がより多く旅行する中でも、顧客の獲得は課題であり続けます。我々はこの問題に対処するためにMLツールを開発し、適切な価格設定を行い、宿泊率を向上させ、ホテルの収益を増やすためのフィッティングルームを提供します。ホテルのデータセットを使用して、正しい部屋の価格を選択し、宿泊率を増加させ、ホテルの収益を増やすAIツールを構築します。 学習目標 ホテルの部屋の適切な価格設定の重要性。 データのクリーニング、データセットの変換、データの前処理。 ホテルの予約データを使用したマップと視覚化プロットの作成。 データサイエンスで使用されるホテルの予約データ分析の現実世界への応用。 Pythonプログラミング言語を使用したホテルの予約データ分析の実施。 この記事はデータサイエンスブログマラソンの一部として公開されました。 ホテルルーム価格データセットとは何ですか? ホテルの予約データセットには、ホテルタイプ、成人の人数、滞在時間、特別な要件など、異なる情報源からのデータが含まれています。これらの値は、ホテルの部屋の価格予測やホテルの収益の増加に役立ちます。 ホテルルーム価格分析とは何ですか? ホテルの部屋の価格分析では、データセットのパターンやトレンドを分析します。この情報を使用して、価格設定や運営に関する意思決定を行います。これらの要素はいくつかの要因に依存します。 季節性: 繁忙期(祝日など)において、部屋の価格は著しく上昇します。 需要: イベントの祝賀やスポーツイベントなど、需要が高まると部屋の価格も上昇します。 競争: 近くのホテルの価格がホテルの部屋の価格に大きく影響を与えます。エリア内のホテルの数が多いほど、部屋の価格は低くなります。 設備: プール、スパ、ジムなどの設備があるホテルは、これらの施設に対してより高い料金を請求します。 場所: 中心地のホテルは、郊外のホテルと比べて高い料金を請求することがあります。 適切なホテルの部屋の価格設定の重要性…
「5つのステップでPyTorchを始めましょう」
このチュートリアルは、PyTorchとその高レベルのラッパー、PyTorch Lightningを使用した機械学習の詳細な紹介を提供しますこの記事では、インストールから高度なトピックまでの重要なステップをカバーし、実践的なアプローチでニューラルネットワークの構築とトレーニングを行う方法を強調して、Lightningを使用する利点を重視します
地理空間データサイエンス:ポイントパターン分析
ジオスペーシャルデータサイエンスは、データ領域のサブ領域であり、イベントがどこで発生したかを考慮に入れてデータポイントの分析を行うものですたとえば、私たちは小売チェーンを所有しているとしましょう...
「ExcelでのPython:これがデータサイエンスを永遠に変える」
「ExcelでPythonコードを実行してデータを分析し、機械学習モデルを構築し、可視化を作成することができます」
PyCharm vs. Spyder 正しいPython IDEの選択
PyCharmとSpyderはPython開発のための2つの最も人気のあるIDEですでは、PyCharmとSpyderの直接比較を見てみましょう
MatplotlibとSeabornを使ったビジュアルの作成
「仕事に役立つ基本的なPythonパッケージの可視化を学びましょう」
「ExcelでのPython 高度なデータ分析への扉を開く」
イントロダクション マイクロソフトは、Pythonプログラミング言語をExcelに統合することを発表し、その分野での重要な進歩を遂げました。基礎的なデータ管理、分析、可視化ツールであるMicrosoft Excelは、Pythonの機能を組み込むことで、分析能力を大幅に向上させました。この統合は、データ分析、機械学習、予測分析、データクリーニングの重要なマイルストーンであり、馴染みのあるExcel環境からシームレスにアクセスできます。このイノベーションは、Pythonプログラミング言語の高度な機能と認識性の高いExcelインターフェースを組み合わせ、2つの間のギャップを効果的に埋めるものです。マイクロソフトは、公開プレビューとしてExcel内のPythonの正式なローンチを行いました。この機能により、Pythonスクリプトの強力な機能とExcelの柔軟で馴染みのある数式を1つのワークブック内でシームレスに統合することができます。 Excelのユーザーは、Pythonのデータを使用して数式やチャートを作成することができます。また、MatplotlibやSeabornなどのチャートライブラリを統合して、ヒートマップ、バイオリンプロット、スワームプロットなどの可視化を設計することもできます。このイノベーションへの独占的な早期アクセスは、Excel for Windowsのベータチャネルリリースを通じてMicrosoft 365 Insidersに提供されます。 この記事は、データサイエンスブログマラソンの一環として公開されました。 = PY ()で簡略化 PythonをExcelで利用するには、セルを選択し、リボンの「数式」タブにアクセスし、「Pythonの挿入」をクリックします。これにより、Excelは指定したセル内でPythonの数式を作成する意図を認識します。または、=PYという関数を使用します。コードのような編集動作を行うために、数式バーを使用することもできます。 コードの編集には数式バーを使用し、プログラミングのように行を追加するためにEnterキーを押します。複数のコード行を一度に表示するためには、数式バーの下向き矢印アイコンをクリックして数式バーを拡大します。 Excel内では、Pythonライブラリの強力な機能を利用して、可視化の作成、機械学習モデルの作成、高度な分析を行うことができます。PythonコードをExcelセルに直接入力できるようにするために、新しいPY関数が導入されました。PythonをExcelで使用するためには、追加のツールをインストールする必要はありません。Excelリボンの「数式」セクションで「Pythonの挿入」ボタンをクリックした後、Pythonコードの記述を開始することができます。 組み込みのXL() Python関数 組み込みのxl() Python関数は、ワークブックからデータを送信することができ、=PY()の結果としてPythonコードの出力を返すことができます。デフォルトでは、Pythonセルは出力形式をExcelの値に設定し、セルのコードによって生成されたPythonオブジェクトの値をExcelの出力に似た形式に変換します。 Excelは、組み込みのコネクタを提供し、外部データのインポートを容易にするためにPower QueryというMicrosoftのデータ操作ツールを利用しています。 外部ソースからデータをインポートする場合は、Excelの「取得と変換」機能を利用してください。この機能は、インポートプロセスを容易にするためにPower Queryを使用します。PythonをExcelで使用して作業する場合、データはワークシートから取得するか、Power Queryを介して取得する必要があります。…
ローカルマシン上でGenAI LLMsのパワーを解放しましょう!
はじめに GenAI LLMsのリリース以来、私たちはそれらをある方法または別の方法で使用しています。最も一般的な方法は、OpenAIのウェブサイトなどのウェブサイトを介して、OpenAIのGPT3.5 API、GoogleのPaLM API、またはHugging Face、Perplexity.aiなどの他のウェブサイトを介してChatGPTやLarge Language Modelsを使用することです。 これらのアプローチのいずれにおいても、私たちのデータはコンピュータの外部に送信されます。これらのウェブサイトは最高のセキュリティを保証しているとはいえ、何が起こるかわかりませんので、サイバー攻撃のリスクがあるかもしれません。時には、これらのLarge Language Modelsをローカルで実行し、可能であればローカルでチューニングしたい場合もあります。この記事では、Oobaboogaを使用して、つまりLLMsをローカルで設定する方法について説明します。 学習目標 ローカルシステムに大規模な言語モデルを展開することの意義と課題を理解する。 大規模な言語モデルを実行するためのローカル環境を作成する方法を学ぶ。 与えられたCPU、RAM、およびGPU Vramの仕様で実行できるモデルを調べる。 Hugging Faceから任意の大規模な言語モデルをローカルで使用するためのダウンロード方法を学ぶ。 大規模な言語モデルを実行するためにGPUメモリを割り当てる方法を確認する。 この記事はData Science Blogathonの一環として公開されました。 Oobaboogaとは何ですか? OobaboogaはLarge…
「AIを活用した言語学習のためのパーソナルボイスボット」
新しい言語をマスターする最も効果的な方法は何ですか?話すことです!しかし、他の人の前で新しい単語やフレーズを試すことはどれだけ圧迫感があるか、私たちは皆知っていますもしもあなたが辛抱強く…
「PythonとLinuxでのポスト量子暗号化」
もしエドワード・スノーデンの言葉を信じるなら、暗号化は「監視に対する唯一の真の保護手段」[1]ですしかし、量子技術の進歩によって、この安全装置が危険にさらされる可能性があります本記事では、その理由について議論します...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.