Learn more about Search Results 調査 - Page 2
- You may be interested
- イメージの意味的なセグメンテーションに...
- 「Googleのジェミニを使い始める方法はこ...
- Link-credible:Steam、Epic Games Store...
- ウェブ開発者のためのAI:プロジェクトの...
- 「ベビーブーマーが引退するにつれ、ドイ...
- 画像認識におけるディープラーニング:技...
- GoogleとJohns Hopkins Universityの研究...
- ネットワークの強化:異常検出のためのML...
- 「データサイエンスの面接を改善する簡単...
- 「Gensimを使ったWord2Vecのステップバイ...
- 「機械学習モデルからの情報漏洩を分析し...
- 「凍結された大規模言語モデルによるビジ...
- 『基礎に戻る週間2 データベース、SQL、デ...
- (マルコフ連鎖を利用したモデリングゲーム)
- プロセオンフォトニクス-コンピューティン...
「このAppleのAI研究は、ジェンダーステレオタイプに関するLLMsの振る舞いの既知の問題を調査します」
大規模言語モデル(LLM)は、ここ数ヶ月で非常に進歩し、さまざまな分野で最先端のベンチマークを押し上げてきました。大規模言語モデル(LLM)の使用と研究が、特に自然言語処理(NLP)の分野で急速に増加しています。SATやLSAT、医学校の試験、IQテストなどのテストに合格し、さらには優れた成績を収めるだけでなく、これらのモデルは幅広い自然言語タスクで最先端(SOTA)を大幅に上回っています。これらの驚くべき進展により、医療アドバイスからセキュリティアプリケーション、作業アイテムの分類まで、日常のタスクにおいてこのようなモデルを採用し、頼りにすることについて広範な議論が起こっています。 Appleの研究者グループによって提案された新しいテストパラダイムの1つは、現在LLMが使用しているトレーニングデータから排除される可能性のある表現を使用しています。彼らはLLMの意思決定の正当化を調べ、LLMがステレオタイプ自体について明示的な声明をすることが頻繁にあることを発見しました。さらに、文構造や文法に関する主張は、より詳細な調査に耐えないこともあります。LLMの行動は、少なくともLLMの訓練に使用されるデータで符号化された西洋文明の集合知に一致しています。この行動パターンを見つけ、その原因を特定し、解決策を提案することが重要です。 言語習得アルゴリズムのジェンダーバイアス 言語モデルのジェンダーバイアスは、広範に研究され、文化の先入観を反映し、悪化させることが文献で示されています。また、オートキャプション、感情分析、有害性検出、機械翻訳などのNLPタスクだけでなく、さまざまなモデルでジェンダーバイアスが存在することが示されています。ジェンダーは、この偏見の影響を受ける社会的カテゴリーに限定されたものではありません。宗教、肌の色、国籍、障害、職業なども含まれます。 文の理解における無意識のバイアス 人間の文処理の文献でも、いくつかの実験的手法を使用してジェンダーバイアスが広範に文献化されています。要約すると、研究は、テキスト内の名詞のジェンダーカテゴリを知ることが理解を助けること、代名詞が通常被験者を主語として参照することが示されています。そのため、より少ない可能性のシナリオでは文のスコアが低下し、読解速度が低下し、アイ・トラッキング実験での逆行などの予期しない効果が生じる可能性があります。 女性に対する社会的バイアス 今日の文化におけるジェンダーに関する先入観やバイアスの存在と普及を考慮すると、言語モデルの出力にもバイアスが現れることは驚くべきことではないかもしれません。ジェンダーバイアスは、医学や経済学、教育や法律などのさまざまな分野で文献化されていますが、これらの研究結果の完全な調査は本稿の範囲外です。たとえば、さまざまな科目や教育環境でバイアスが見つかったという研究があります。就学前の幼児からもステレオタイプの悪影響を受ける可能性があり、これは自己認識、学業および職業選択、発達の他の領域に持続的な影響を与える可能性があります。 デザイン 研究者は、WinoBiasとは異なるがジェンダーバイアスを調査するための枠組みを考案しました。各研究アイテムには、男性に関連付けられるステレオタイプな職業と女性に関連付けられる職業のペア、および男性的または女性的な代名詞が含まれています。戦略によっては、さまざまな反応が予想されます。また、文の前提条件と関連付けられる語彙要素によって、文によって戦略が異なる場合もあります。 研究者は、WinoBiasの文が複数のLLMのトレーニングデータの一部であると考えているため、自分たちの研究ではそれらを使用しないようにしています。代わりに、前述のパターンに従って15文のスキーマを作成します。また、WinoBiasとは異なり、名詞の選択は米国労働省のデータに基づくのではなく、英語話者の特定の職業を示す名詞が男性寄りまたは女性寄りと見なされる程度についての研究に基づいています。 2023年、研究者は一般に公開されている4つのLLMを調査しました。モデルの設定オプションが多い場合、彼らは工場のデフォルトを使用しました。彼らは代名詞とキャリア選択の関連性について対照的な結果と解釈を提供しています。 研究者は、LLMの動作(ジェンダーニュートラルな代名詞(例:theyや新しい代名詞)の使用(および非使用)など)がトランスジェンダーの個人の現実を反映し、影響する可能性について考慮していません。バイナリのパラダイムの中でこれらの知見が得られたことと、以前の研究からのデータがないことを考慮すると、より多様なジェンダーを含めることがLLMのパフォーマンスにより暗いイメージを描く可能性があると推測されます。ここでは、これらの単純なジェンダーの概念に収まらないマージナライズされた人々に悪影響を及ぼす可能性があるとしながらも、将来の研究がこれらの微妙な関係に焦点を当て、新たな光を当てることに楽観的な姿勢を表明しています。 まとめると 既存の大規模言語モデルが性別バイアスを示しているかどうかを判断するために、研究者は単純なシナリオを考案しました。WinoBiasは、既存のLLMのトレーニングデータに含まれることが期待されている人気のある性別バイアスのデータセットであり、パラダイムはそのデータセットを拡張し、異なるものです。研究者は2023年第1四半期にリリースされた4つのLLMを調査しました。彼らはモデル間で一貫した結果を発見し、彼らの発見が市場に出回っている他のLLMにも適用される可能性があることを示しました。彼らは、LLMが男性と女性についての性差別的な仮定をし、特に人々の男性と女性の職業に関する概念に合致するものであり、実際の状況に基づくものではないことを、米国労働統計局のデータによって明らかにしました。一つの重要な発見は – (a) LLMは、どの代名詞がどの性別を指している可能性が最も高いかを決定する際に、性別のステレオタイプを使用しました。例えば、LLMは男性を指すために「彼」を使用し、女性を指すために「彼女」を使用しました。 (b) LLMは、女性に関する性別に基づく先入観を男性に比べてより強調しました。LLMは、特に具体的なプロンプトが与えられた場合にこの観察をすることが一般的でしたが、自分自身に任された場合にはあまりしなかったです。 (d) LLMは、自分たちの決定に対して見せかけの正当化をし、それがしばしば間違っており、予測の真の動機を隠している可能性がありました。 これらのモデルのもう一つの重要な特徴が明らかにされました:LLMはバイアスのあるデータで訓練されているため、人間のフィードバックを用いた強化学習を行っていても、そのバイアスを反映し悪化させる傾向があります。研究者は、他の社会的バイアスの形態と同様に、弱者やグループの保護と公平な取り扱いがLLMの開発と教育の中心に置かれるべきだと主張しています。
「大規模な言語モデルを使用した顧客調査フィードバック分析の強化」
はじめに 顧客フィードバック分析の世界へようこそ。顧客の意見の未探索の富は、ビジネスの成功を形作ることができます。今日の激しい競争と大規模な言語モデルでは、顧客の思考を理解することは、もはや贅沢ではなく必要不可欠です。顧客フィードバック分析は、アートとサイエンスの両方であり、調査、レビュー、ソーシャルメディア、サポートのやり取りなど、さまざまなソースから実行可能な洞察を抽出するための方法論的なアプローチです。 顧客のフィードバックが今まで以上に豊富に流れるデジタルの世界では、ビジネスはこの富にアクセスする方法を絶えず探し求めています。この記事では、AIと顧客フィードバック分析の融合を紹介し、自然言語処理(NLP)や機械学習などの技術が実行可能な洞察を抽出する方法を探ります。AIが顧客満足度向上とビジネスの成功に与える変革の可能性を明らかにします。AIと顧客体験最適化のシナジーを探求するこの啓蒙的な旅に参加してください。 学習目標 AIの基礎: NLPや大規模な言語モデルなど、顧客フィードバック分析におけるAIの重要な概念を把握します。 AIの応用: 調査、感情分析、フィードバックの分類、自動応答などでのAIの実用的な使用法を探り、その効率性を強調します。 現実世界への影響: データ品質やプライバシーなどの顧客フィードバック分析におけるAIの課題と倫理的考慮事項を理解します。 戦略的なAIの採用: フィードバック分析における意思決定、顧客志向、効率性、知能、革新を向上させるために、AIを戦略的に活用する方法を学びます。 この記事はデータサイエンスブログマラソンの一部として公開されました。 AIの理解:簡潔な概要 人工知能(AI)は、機械やシステムに人間のような知能を再現しようとする革命的な技術です。この簡潔な概要では、AIの核心的な概念と機能について洞察を提供します。 人間の知能の模倣 AIは、データから学習し、パターンを認識し、意思決定を行い、通常は人間の認知を必要とするタスクを実行できるようにすることで、人間の知能をシミュレートすることを目指しています。これはアルゴリズムとデータの組み合わせによって行われます。 アルゴリズムの役割 アルゴリズム、つまり事前に定義されたルールと命令のセットがAIの基礎を形成しています。これらのアルゴリズムは、膨大な量のデータを処理し、相関関係を特定し、この情報を予測や意思決定に利用します。機械学習とディープラーニングは、データからの反復学習を通じてアルゴリズムのパフォーマンスを向上させるためのAIのサブセットです。 データは燃料 データはAIの命脈です。AIシステムがアクセスできる品質の高いデータが多ければ多いほど、パフォーマンスと精度が向上します。このデータには、テキスト、画像、音声など、AIシステムが分析または処理するために設計された情報の任意の形式が含まれます。 AIの種類 AIは、狭いまたは弱いAIと一般的または強いAIの2つの主要なタイプに分類されます。狭いAIは、言語翻訳や画像認識などの特定のタスク向けに設計されています。一方、一般的なAIは人間のような知能を持ち、人間の認知に類似した幅広いタスクを実行できます(ただし、このレベルのAIはまだ主に理論的なものです)。 AIの応用…
大規模言語モデル(LLM)の調査
イントロダクション 大規模言語モデル(LLM)の登場により、技術の進歩の風景は劇的に変容しました。これらのモデルは、洗練された機械学習アルゴリズムと膨大な計算能力によって駆動され、人間の言語を理解し、生成し、操作する能力を大幅に向上させるものです。LLMは微妙なニュアンスを解釈し、一貫した物語性を創造し、人間のコミュニケーションを模倣する会話を行う驚異的な能力を示しています。LLMの深い探求に乗り出すにつれて、さまざまな産業、コミュニケーションパラダイム、そして人間とコンピュータの相互作用の未来に対するその深遠な影響に直面することになります。 しかし、驚異的な可能性の中には複雑な課題の蜘蛛の巣が広がっています。LLMはその能力にもかかわらず、バイアス、倫理的な懸念、および潜在的な誤用に免疫を持ちません。これらのモデルが広範なデータセットから学習する能力は、データの出所と可能な隠れたバイアスについての疑問を呼び起こします。さらに、LLMが私たちの日常生活にますます統合されるにつれて、プライバシー、セキュリティ、透明性への懸念が極めて重要になります。さらに、LLMのコンテンツ生成と意思決定プロセスへの関与に伴う倫理的な考慮事項が注意深く検討されるべきです。 LLMの領域を探求するこの旅では、彼らの機能の複雑さ、革新の可能性、提起する課題、および責任ある開発を指針とする倫理的なフレームワークについて深く掘り下げます。このような状況を思慮深いアプローチでナビゲートすることにより、LLMの潜在能力を活用しつつ、その限界に対処することができ、最終的には言語理解と生成において人間と機械が調和して協力する未来を形作ることができます。 学習目標 LLMの基礎理解: LLMのアーキテクチャ、コンポーネント、および基礎技術を含む、LLMの基礎的な理解を得る。LLMが人間の言語を処理し生成する方法について探求する。 LLMの応用の探求: 言語理解やコンテンツ生成から言語翻訳や専門家支援まで、さまざまな産業でのLLMの応用を探求する。LLMがさまざまなセクターを変革している方法を理解する。 倫理的な考慮事項の認識: バイアス、誤情報、プライバシーの懸念を含む、LLMに関連する倫理的な考慮事項に深く入り込む。LLMの責任ある倫理的な使用を確保するためにこれらの課題にどのように対処するかを学ぶ。 LLMの影響の分析: コミュニケーション、教育、産業の風景におけるLLMの社会的および経済的な影響を検証する。LLMを生活のさまざまな側面に統合することによってもたらされる潜在的な利益と課題を評価する。 将来のトレンドとイノベーション: 対話能力、個別化体験、学際的な応用におけるLLMの進化する風景を探求する。これらの展開が技術と社会にもたらす意味を考える。 実践的な応用: コンテンツ作成、言語翻訳、データ分析などのLLMの実践的なユースケースを探求することによって、自身の知識を応用する。さまざまなタスクにおいてLLMを活用することで、実践的な経験を積む。 この記事はData Science Blogathonの一環として公開されました。 言語モデルの進化 言語モデルの軌跡は、近年の驚異的な進歩を特徴とするダイナミックな進化を経験してきました。言語処理の領域におけるこの進化の旅は、大規模言語モデル(LLM)の登場により、自然言語処理(NLP)の能力におけるパラダイムシフトを示しています。 旅は、後続のイノベーションの道を開いた初期の基本的な言語モデルから始まります。最初の段階では、言語モデルは範囲が限られており、人間の言語の複雑さを捉えるのに苦労しました。技術的な力が進化するにつれて、これらのモデルの洗練度も向上しました。初期のバージョンでは、基本的な言語ルールと統計的な手法を組み合わせてテキストを生成しましたが、文脈と一貫性に制限がありました。 しかし、ニューラルネットワークの一種であるトランスフォーマーの登場は、画期的な飛躍をもたらしました。トランスフォーマーは、文全体や段落全体の文脈的な関係を理解することを可能にします。このブレークスルーが大規模言語モデルの基盤となりました。GPT-3などのこれらのモデルは、膨大な数のパラメータを持ち、前例のない品質のテキストを処理および生成する能力を持っています。…
VoAGIニュース、9月20日:ExcelでのPython:これがデータサイエンスを永遠に変えるでしょう•新しいVoAGI調査!
Python in Excel これがデータサイエンスを永遠に変えるでしょう • VoAGI調査 データサイエンスの支出とトレンドに関して同僚とベンチマークを行う • 最大限の生産性を実現するための5つの最高のAIツール • さらにたくさんの情報があります!
「VoAGI調査:データサイエンスの支出とトレンド2023 H2における同業他社とのベンチマーク」
VoAGIは、オールシングインサイト調査委員会およびそのパートナーと共に、マインドセットやフォーカスのトレンド、予算やテクノロジーの支出に関するベンチマーキング情報を、コミュニティ内の皆様と同僚に提供するために、Spend & Trends調査を作成しました
このAI研究論文は、視覚の位置推定とマッピングのための深層学習に関する包括的な調査を提供しています
もし私があなたに「今どこにいるの?」または「周りの様子はどうですか?」と尋ねたら、人間の多感覚知覚という独特な能力のおかげで、あなたはすぐに答えることができるでしょう。この能力により、あなたは自分の動きと周囲の環境を知覚し、完全な空間認識を持つことができます。しかし、同じ質問がロボットに対して投げかけられた場合、どのようにアプローチするでしょうか。 問題は、このロボットが地図を持っていない場合、自分がどこにいるかわからないし、周りの様子も知らなければ地図も作成できないということです。要するに、これは「先に来たのは鶏か卵か?」という問題であり、機械学習の世界ではこの文脈で「位置推定と地図作成の問題」と呼ばれています。 「位置推定」とは、ロボットの動きに関連する内部システム情報を取得する能力であり、位置、方向、速度などが含まれます。一方、「地図作成」とは、周囲の環境条件を知覚する能力であり、周囲の形状、視覚的特徴、意味属性などが含まれます。これらの機能は独立して動作することもあり、一方が内部状態に焦点を当て、他方が外部条件に焦点を当てることもあります。また、同時位置推定と地図作成(SLAM)として知られる単一のシステムとして連携することもあります。 画像ベースの再配置、視覚的オドメトリ、SLAMなどのアルゴリズムには、センサーの測定の不完全さ、動的なシーン、不利な照明条件、現実世界の制約など、実用化を妨げる要素があります。上記の画像は、個々のモジュールが深層学習ベースのSLAMシステムに統合される様子を示しています。この研究では、深層学習ベースのアプローチと従来のアプローチの両方について包括的な調査を行い、次の2つの重要な質問に同時に答えます。 深層学習は、視覚的位置推定と地図作成に有望ですか? 研究者たちは、将来の汎用SLAMシステムにおいて、深層学習が独自の方向性を持つと考えています。以下にリストアップされた3つの特性がその理由です。 第一に、深層学習は、視覚的SLAMフロントエンドに統合される強力な知覚ツールを提供します。これにより、オドメトリ推定や再配置のための難しい領域で特徴を抽出し、地図作成のための密な深度を提供することができます。 第二に、深層学習はロボットに高度な理解力と相互作用能力を与えます。ニューラルネットワークは、マッピングやSLAMシステム内で場面の意味をラベリングするなど、一般的に数学的な方法では説明が難しい抽象概念と人間の理解可能な用語を結びつけることに優れています。 最後に、学習手法により、SLAMシステムや個別の位置推定/地図作成アルゴリズムが経験から学び、新しい情報を積極的に活用することができます。 深層学習は、視覚的位置推定と地図作成の問題を解決するためにどのように適用されるのでしょうか? 深層学習は、SLAMのさまざまな側面をモデリングするための多目的なツールです。たとえば、画像から姿勢を直接推定するエンドツーエンドのニューラルネットワークモデルを作成するために使用することができます。これは、特徴のない領域、動的な照明、モーションブラーなどの厳しい条件を扱う際に特に有益です。 深層学習は、SLAMの関連付け問題を解決するために使用されます。画像を地図に接続し、ピクセルに意味を付け、以前の訪問時の関連シーンを認識することで、再配置、意味マッピング、ループクロージャ検出を支援します。 深層学習は、興味のあるタスクに関連する特徴を自動的に発見するために活用されます。例えば、幾何学的制約などの先行知識を利用することで、SLAMのための自己学習フレームワークが構築され、入力画像に基づいてパラメータを自動的に更新することができます。 深層学習技術は、意味のあるパターンを抽出するために大規模かつ正確にラベル付けされたデータセットに依存しますが、不慣れな環境に対して一般化することが困難な場合があります。これらのモデルは解釈可能性に欠けており、しばしばブラックボックスとして機能します。また、位置推定と地図作成システムは計算量が多く、高度に並列化可能ですが、モデルの圧縮技術が適用されていない限り、計算負荷が高くなる場合があります。
パンダのコピー・オン・ライトモードの詳細な調査:パートI
「pandas 2.0 は4月初旬にリリースされ、新しいCopy-on-Write (CoW) モードに多くの改善がもたらされましたこの機能は、予定されている pandas 3.0 でデフォルトになることが期待されています」
「カリフォルニアのプライバシー規制当局の最初のケース:インターネットに接続された車の調査」
「現代の車はデータで満たされたコンピューターであり、それについての明確なメーカーのポリシーはほとんどありません」
あなたのモデルは良いですか?Amazon SageMaker Canvasの高度なメトリクスについての詳細な調査
もしあなたがビジネスアナリストであるなら、おそらく顧客の行動を理解することは、あなたが気にする最も重要なことの一つでしょう顧客の購買意思決定の背後にある理由やメカニズムを理解することは、収益の成長を促進することができますしかし、顧客の喪失(一般的には顧客の離脱と呼ばれます)は常にリスクを伴いますなぜ顧客が去るのかについての洞察を得ることは、重要です
テキストのポテンシャルを引き出す:プリエンベッドテキストクリーニング方法の詳細な調査
テキストクリーニングの方法のデモンストレーションには、Kaggleから取得した「メタモルフォーシス」という名前のテキストデータセットを使用します上記のコードセルが機能するためには、ローカルディレクトリパスを指定する必要があります...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.