Learn more about Search Results 結論 - Page 2

一般的な世界モデル:ランウェイAI研究が新しい長期研究の取り組みを開始

ワールドモデルは、環境の内部理解を構築し、その知識を利用してその空間内の将来のイベントを予測することを目指すAIシステムです。研究者はこれらのワールドモデルを主に制御された環境でテストしており、ビデオゲームや運転などの特定のタスクを含むものです。最終目標は、予測不可能な現実世界で遭遇するさまざまな状況を処理できるモデルを作成することです。 そのようなシステムを作成する初の試みの1つは、Gen-2ビデオ生成システムです。これは、ものの動きを基本的に理解することを示す短い動画を作成しようとする初心者の画家のようなものです。ただし、より複雑なタスクに取り組む際には厳しいもので、急速なカメラの移動や精巧なオブジェクトの挙動を含むシナリオに苦しんでいます。これは、現在のワールドモデルの限界を明らかにし、研究者がこれらのシステムを改善して発展させることに深く関与するきっかけとなっています。 効果的なワールドモデルを構築するための道のりにはいくつかの課題があります。重要な側面の1つは、これらのモデルが環境の正確かつ一貫したマップを生成する必要があるということです。動きを認識するだけでなく、与えられたスペース内でのナビゲーションと相互作用に関わるものです。さらに、これらのモデルは、世界のダイナミクスだけでなく、その住人の行動も理解しシミュレートする必要があります。これは多面的な課題であり、継続的な研究とイノベーションが求められます。 研究者たちはこれらの課題に取り組んでおり、ワールドモデルの適応性と能力を向上させることを目指しています。ビデオゲームにおけるキャラクターのアップグレードと考えるとイメージしやすいですが、これらのモデルは信頼性のあるマップの生成と多様で複雑なシナリオを通じたナビゲーションのレベルアップが必要です。目標は、現実世界の予測不可能性に対応するスキルを身につけさせることです。 ワールドモデルの効果を測定するため、研究者はさまざまな側面を測定するメトリクスを使用しています。これらのメトリクスは、モデルが一貫した正確なマップを生成する能力、さまざまな環境でのナビゲーション能力、および人間の行動の現実的なシミュレーションなど、さまざまな側面を測定します。これらの数量化可能な指標は、進捗状況と進化し続けるワールドモデルの能力を評価するための基準として利用されます。 結論として、一般的なワールドモデルの開発は、課題と興味深い見通しに満ちた進行中のプロセスです。研究者がこれらのモデルを磨き続けることで、さまざまな現実世界のシナリオでのシミュレーションと予測が向上することが期待されています。これらのモデルの進化は、AIの能力の限界を押し広げるだけでなく、複雑な環境の深い理解とダイナミックな世界との改善されたAIの相互作用の可能性を持っています。 この投稿はGeneral World Models: Runway AI Research Starting a New Long-Term Research Effortの記事、「MarkTechPost」で最初に公開されました。

スタンフォード大学の研究者が、大規模言語モデル(LLM)における相互補完的および貢献的帰属に対する統一的なAIフレームワークを紹介します

大規模言語モデル(LLMs)は、人工知能(AI)の指数関数的に進化する分野での最新の進歩です。これらのモデルは、テキスト生成、質問応答、テキスト要約などのタスクにおいて驚異的なパフォーマンスを発揮しますが、生成されるデータの正確性とセキュリティには課題があります。これらのモデルは、時には虚偽の情報を製造または生成し、信頼性のない出力を作り出すことがあります。 モデルの出力が害を引き起こす場合、その源泉を追跡することは道徳的および法的な責任を割り当てるために必要ですが、帰属は創造的な技術的研究が必要な困難なタスクです。LLMの出力の帰属に関する研究は、主に2つの領域に焦点を当てています:トレーニングデータの帰属(TDA)および引用生成。 最近の研究では、スタンフォード大学の研究チームが大規模言語モデルの帰属について統一フレームワークを導入しました。この研究は引用生成とTDAを組み合わせ、確証的および寄与的な帰属の下に統一的なフレームワークを提供します。寄与的帰属は作成されたコンテンツの源泉の検証に重点を置きますが、確証的帰属は外部の知識に基づいて出力が正確であることを検証しようとします。 チームはさまざまな状況で望ましい属性を詳細に検討し、各形式の帰属について正確な定義を提供しました。この方法は、両方の種類の徹底的な帰属を提供できる帰属システムの創造と評価を促進するものであり、言語の帰属の明確で柔軟な概念に向けた第一歩です。 このフレームワークは、その有用性を示すために実際のユースケースで利用されています。例は、一方または両方の種類の帰属が必要となる状況を示しています。法的文書の作成のプロセスでは、内部的な妥当性、つまりトレーニングデータの帰属によって情報の源泉と信頼性を確認し、外部的な妥当性、つまり引用の作成によって素材が法的要件に準拠していることを確認します。同様に、医療の質問応答の文脈では、応答の正確性の検証とモデルの知識に影響を与える源泉の理解のために両方の帰属が重要です。 チームは次のように主な貢献をまとめました。 共有要素を強調した帰属の共有フレームワークを示すインタラクションモデルが提示されました。 両方の種類の帰属に関連する属性を見つけることによって、組み合わせたフレームワークが改善されました。 現在の寄与的および確証的な帰属の実装の包括的な分析が行われ、現実世界での使用に関する洞察が提供されました。 法的文書の作成などの帰属に重要なシナリオについて、効果的に必要な特性を記述しました。 結論として、このフレームワークは素晴らしい導入であり、帰属システムの評価の標準化に役立ち、さまざまな分野でその効果の体系的かつ比較可能な評価を推進します。これにより、大規模言語モデルの使用を改善し促進し、出力の信頼性の重要な問題を解決することができます。

「機械学習アルゴリズムとGAN」

「GANとさまざまな機械学習アルゴリズムについて詳しく学びましょう」(GANとさまざまなきかいがくしゅうアルゴリズムについてくわしくまなびましょう)

システムデザインシリーズ:ゼロから高性能データストリーミングシステムを構築するための究極のガイド!

「データストリーミング」は非常に複雑な印象を受けますし、「データストリーミングパイプライン」なんてなおさらです専門用語に囚われる前に、まずはその意味について話す前に、理由から始めましょう...

『 ファッションと美容における迅速な思考とゆっくりな思考:PythonとGPT4を用いた統計的変動性』

私たちは物事をすぐにシンプルにする傾向がありますが、複雑さにもゆっくりと向き合うことがあります(望む場合には)ダニエル・カーネマンは彼の著書「思考、早くと遅く」で、私たちの葛藤を説明しています...

スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています

ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプロトコルは、正確なリガンド結合ポーズを生成するために事前情報が必要であり、スコアリング関数の正確さが制限されています。GLOWとIVESという2つの新しいプロトコルは、スタンフォード大学の研究者によって開発され、この課題に対応し、ポーズのサンプリング効果を向上させることを示しています。AlphaFoldで生成されたタンパク質構造を含むさまざまなタンパク質構造でのベンチマークテストにより、これらの手法の妥当性が確認されています。 分子ドッキングにおけるディープラーニングは、しばしば剛体タンパク質ドッキングデータセットに依存しており、タンパク質の柔軟性を無視しています。一方、柔軟ドッキングはタンパク質の柔軟性を考慮していますが、精度が低い傾向があります。GLOWとIVESは、これらの制限に対応する高度なサンプリングプロトコルであり、特に動的結合ポケットでベースラインメソッドを常に上回っています。これは、タンパク質リガンドドッキングにおけるリガンドポーズのサンプリングを改善するために重要であり、ディープラーニングベースのスコアリング関数の向上に重要です。 分子ドッキングは、薬物探索においてタンパク質結合サイトへのリガンド配置を予測します。従来の方法は正確なリガンドポーズの生成に課題を抱えています。ディープラーニングは正確性を向上させることができますが、効果的なポーズのサンプリングに依存しています。GLOWとIVESは、チャレンジングなシナリオに対してサンプルを改善し、正確性を向上させるための進んだサンプリングプロトコルです。AlphaFoldで生成された未リガンド化または予測されたタンパク質構造に適用可能であり、キュレーションされたデータセットとオープンソースのPythonコードも提供しています。 GLOWとIVESは、分子ドッキングのための2つのポーズサンプリングプロトコルです。GLOWはソフト化された分散力ポテンシャルを利用してリガンドポーズを生成し、IVESは複数のタンパク質構造を組み込むことで正確性を向上させます。ベースラインメソッドとのパフォーマンス比較により、GLOWとIVESの優位性が示されています。クロスドッキングケースにおける正しいポーズの割合を測定するテストセットの評価は、IVESの効率において重要なシードポーズの品質を示しています。 GLOWとIVESは、リガンドポーズのサンプリングにおいてベースラインメソッドを上回る正確性を持ち、チャレンジングなシナリオやAlphaFoldベンチマークにおいて顕著なタンパク質の構造変化にも優れています。テストセットの評価により、正しいポーズのサンプリング確率の優越性が確認されています。IVESは複数のタンパク質構造を生成することで、タンパク質構造の幾何学的なディープラーニングにおいて、より少ない構造でSchrodinger IFD-MDと同様のパフォーマンスを達成します。GLOWとIVESによって生成された5,000のタンパク質リガンドペアのリガンドポーズデータセットは、ディープラーニングベースのスコアリング関数の開発と評価において貴重なリソースとなります。 https://arxiv.org/abs/2312.00191 結論として、GLOWとIVESは、基本的な技術よりも効果的な2つのポーズサンプリング方法であり、特に困難なシナリオとAlphaFoldベンチマークにおいて優れた性能を発揮しています。IVESでは複数のタンパク質構造が生成されるため、幾何学的ディープラーニングに非常に有利です。また、GLOWとIVESが提供する5,000のタンパク質リガンドペアのリガンドポーズを含むデータセットは、分子ドッキングのディープラーニングベースのスコアリング関数に取り組んでいる研究者にとって貴重な資源です。

高度なRAGテクニック:イラスト入り概要

この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します

自然言語処理:AIを通じて人間のコミュニケーションの力を解き放つ

この記事では、NLPの理解と進化について取り上げますAIがコミュニケーションの世界にどのように貢献できるかを学びましょう

ビジネスにおけるAIの潜在的なリスクの理解と軽減

「この技術を導入する際に遭遇する可能性のあるAIのリスクを学びましょうビジネスオーナーとして、そのようなリスクを避けるためにできることを理解しましょう」

「アウトライア検出手法の比較」

外れ値検出は、与えられたデータセット内の異常値(珍しい観測値)を特定するための教師なしの機械学習タスクですこのタスクは、私たちの利用可能なデータが多い現実世界のケースで役立ちます…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us