Learn more about Search Results 構成 - Page 2
- You may be interested
- 「2024年にデータサイエンティストになる...
- DeepMind RoboCat:自己学習ロボットAIモデル
- 「Llama 2:ChatGPTに挑むオープンソース...
- ベントMLを使用したHugging Faceモデルの...
- バーディーンChatGPTプラグインの使い方
- 「Googleとトロント大学の研究者が、ライ...
- Unityを使用して知能を解決するための利用
- 中国の研究者が、ビデオ・LLaVAを紹介しま...
- AWS vs Azure:究極のクラウド対決
- スタンフォード大学の研究者たちは、MLAge...
- LGBMClassifier 入門ガイド
- 「生成AIにおけるバイアスの軽減」
- このAI研究により、チップデザインに適し...
- AIの台頭が犬食い犬のテック産業を牽引し...
- ‘未知に挑む検索 強化生成 (RAG) | AIが人...
メリーランド大学カレッジパーク校の新しいAI研究では、人間の目の反射から3Dシーンを再構成することができるAIシステムが開発されました
人間の目は素晴らしい器官であり、視覚を可能にし、重要な環境データを保管することができます。通常、目は2つのレンズとして使用され、光をその網膜を構成する感光細胞に向けて誘導します。しかし、他人の目を見ると、角膜から反射された光も見ることができます。カメラを使用して他人の目を写真に撮ると、イメージングシステム内の一対のミラーに自分の目を変えます。観察者の網膜に届く光と彼らの目から反射する光は同じ源から来るため、彼らのカメラは観察している環境に関する詳細を含む写真を提供するはずです。 以前の実験では、2つの目の画像が、観察者が見ている世界の全景表現を回復させました。リライト、焦点オブジェクトの推定、グリップ位置の検出、個人認識などのアプリケーションは、後続の調査でさらに研究されています。現在の3Dビジョンとグラフィックスの開発により、単一の全景環境マップを再構築するだけでなく、観察者の現実を3次元で復元できるかどうか熟考しています。頭が自然に動くと、目が複数のビューから情報をキャプチャし、反映することを知っています。 メリーランド大学の研究者たちは、過去の画期的な業績と最新のニューラルレンダリングの最新の進歩を融合させた、観察者の環境の3D再構築のための全く新しい技術を提供しています。彼らの方法は、静止したカメラを使用し、目の画像からマルチビューの手掛かりを抽出します。通常のNeRFキャプチャセットアップでは、マルチビュー情報を取得するために移動カメラが必要です(しばしばカメラ位置の推定に続きます)。概念的には単純ですが、実際には、目の画像から3D NeRFを再構築することは困難です。最初の困難は、ソース分離です。彼らは、人間の目の複雑な虹彩のテクスチャと反射を区別する必要があります。 これらの複雑なパターンにより、3D再構築プロセスが不明瞭になります。通常、正常なキャプチャでは、場面のクリーンな写真に対して、虹彩のテクスチャが混在することはありません。この構成により、再構築技術はより困難になり、ピクセルの相関が崩れます。角膜のポーズの推定は、2つ目の困難を提示します。画像観察から正確に位置を特定することが困難であり、小さく、難解な目です。ただし、それらの位置と3D方向の正確さは、マルチビュー再構築にとって重要です。 これらの困難を克服するために、この研究の著者は、虹彩テクスチャを全体的な輝度場から区別しやすくするために、2つの重要な要素を追加して、目の画像でNeRFをトレーニングするためにNeRFを再利用しました。短い放射線を使用したテクスチャ分解(a)およびアイポーズの微調整(b)です。彼らは、現実的なテクスチャを持つ人工的な角膜から反射をキャプチャする写真で複雑な屋内環境の合成データセットを作成して、彼らの技術のパフォーマンスと効果を評価します。彼らはまた、いくつかのアイテムで実際に収集された人工および実際の眼球画像の研究を行い、彼らの方法論のいくつかの設計決定を支援します。 これらが彼らの主な貢献です。 •彼らは、過去の画期的な業績と最新のニューラルレンダリングの最新の進歩を融合させた、観察者の環境の3D再構築のための全く新しい技術を提供しています。 •彼らは、目の画像で虹彩テクスチャを分解するための放射状事前分布を導入することで、再構築された輝度場の品質を大幅に向上させています。 •彼らは、アイボールのノイズのあるポーズ推定を減らす角膜ポーズの微調整プロセスを開発することにより、人間の目から特徴を収集する特別な問題を解決しています。 これらの進展により、視線外の3Dシーンを明らかにし、キャプチャするためのアクシデンタルイメージングの広い範囲で研究・開発の新しい機会が生まれました。彼らのウェブサイトには、彼らの開発を実証するいくつかのビデオがあります。 図1は、目の反射を使用して放射輝度場を再構築することを示しています。人間の目は非常に反射します。被写体の目の反射だけを使用して、移動する頭を記録する一連のフレームから彼らが見ている3Dシーンを再構築して表示することができることを示しています。
AWS CDK を使用して Amazon SageMaker Studio ライフサイクル構成をデプロイします
Amazon SageMaker Studioは、機械学習(ML)のための最初の完全に統合された開発環境(IDE)ですStudioは、データを準備し、モデルを構築、トレーニング、展開するために必要なすべてのML開発ステップを実行できる単一のWebベースのビジュアルインターフェースを提供しますライフサイクル設定は、Studioライフサイクルイベントによってトリガーされるシェルスクリプトです [...]
「言語モデルの逆スケーリングの謎を解明する」
This aspect of inverse scaling is a crucial point to keep in mind, as it can affect the performance of larger LLMs. However, this…
「自律走行車とトロリー問題:「良い」決定を探し求めて」
North Carolina State Universityの熱心な研究チームが、日常の交通シナリオで生じる倫理的ジレンマについて正確かつ関連性の高いデータを積極的に収集していますこの貴重な情報は、低リスクな状況の複雑さをより深く理解し、私たちの道徳的な意思決定能力を改善するのに役立ちます
マウス用のVRゴーグル:ネズミの世界の秘密を解き放つ
ノースウェスタン大学の研究者たちは、マウス向けの仮想現実ゴーグルを作り出すことで画期的な成果を達成しましたこの革新的な技術により、より高度な実験を行い、マウスの行動や認知機能をより深く理解することが可能になりましたこのブレークスルーは、科学研究を大幅に向上させ、将来の発見の道を開拓する可能性を秘めています
「2023年、オープンLLMの年」
2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…
「MongoDBの時系列コレクションとAmazon SageMaker Canvasで洞察力の向上を加速する」
これは、MongoDBのBabu Srinivasanと共同執筆したゲスト投稿です現在の急速に変化するビジネスの風景では、リアルタイムの予測を行う能力の欠如は、正確かつタイムリーな洞察に重要な依存をする産業にとって、重要な課題をもたらしますさまざまな産業におけるリアルタイムの予測の欠如は、意思決定に重要な影響を与える切迫したビジネスの課題を提起します
マンバ:シーケンスモデリングの再定義とトランスフォーマーアーキテクチャの超越
「マンバの画期的なシーケンスモデリング手法を探求し、効率的な処理と先進的な状態空間メカニズムにより、従来のモデルを超えてくださいマンバとともに、AIの未来に飛び込んでください」
「H2O.aiとOptunaを使用した高度な予測モデリングのためのスタックアンサンブル」
私たちは皆、予測モデリングにおいてアンサンブルモデルが単一のモデルよりも優れたパフォーマンスを発揮することを知っていますおそらく、バギングやブースティングといった一般的なアンサンブル手法についてはすべて聞いたことがあるでしょうさらに、ランダムフォレストなどもよく知られています…
コンテナの力を解放する:あらゆる開発ニーズに対応するトップ20のDockerコンテナを探索する
イントロダクション Dockerコンテナは、ソフトウェア開発とデプロイメントの急速に進化する風景で欠かせないツールとして登場しました。アプリケーションをパッケージ化、配布、実行するための軽量かつ効率的な方法を提供しています。この記事では、さまざまなカテゴリーでのトップ20のDockerコンテナについて詳しく説明し、その機能、使用例、開発ワークフローの合理化への貢献を紹介します。 Webサーバーとコンテンツ管理 Webサーバー Nginx Nginxは、優れたパフォーマンスと拡張性で称賛される多目的のWebサーバーおよびリバースプロキシです。軽量な構造と同時接続の適切な管理により、効率を求める開発者にとって上位の選択肢となっています。主な特徴には、堅牢な負荷分散機能、静的コンテンツの効率的な処理、高度なセキュリティ機能があります。その用途は、静的ウェブサイトの提供からマイクロサービスの負荷分散、アプリケーションサーバーのリバースプロキシまでさまざまです。 Apache HTTP Server Apache HTTP Serverは、Webサーバーのランドスケープでの草分けとして、動的なコンテンツの配信において堅固なオプションです。モジュラーデザインと豊富な設定可能性のために有名で、さまざまなアプリケーションに容易に適応できます。主な特徴には、包括的なモジュールサポート、優れた設定可能性、堅牢なコミュニティの支援があります。その用途は、動的ウェブサイトのホスティング、PHPアプリケーションの実行、さまざまなウェブベースのアプリケーションのバックエンドサーバーまで広がっています。 Traefik もう1つのDockerコンテナであるTraefikは、マイクロサービスアーキテクチャに特化した現代のリバースプロキシとロードバランサーです。動的な構成と自動的なサービスディスカバリーが魅力で、コンテナ化された環境に最適な選択肢となっています。主な特徴には、自動的なサービスディスカバリー、コンテナオーケストレーションツールとのシームレスな統合、Let’s Encryptのサポートが含まれており、SSL/TLS証明書の自動プロビジョニングを可能にします。その用途は、マイクロサービスの負荷分散や指定されたルールに基づいたトラフィックルーティングから、SSL/TLS証明書を自動的に管理することによるセキュアな通信の促進まで、現代のインフラストラクチャセットアップにおける重要なツールとなっています。 コンテンツ管理システム WordPress WordPressは、インターネットの大部分を支える支配的なコンテンツ管理システムです。WordPressをDocker化することで、展開を合理化し、拡張性のある環境でコンテンツ管理ニーズを効率化することができます。その大きな特徴は、広範なプラグインエコシステム、ユーザーフレンドリーなインターフェース、堅牢なコミュニティのサポートです。ブログやコンテンツ作成を支援するだけでなく、ビジネスウェブサイトの構築やオンラインコミュニティの監督など、さまざまなウェブ関連の活動に適応する柔軟なソリューションとなっています。 データベースとデータストア 関係性データベース MySQL MySQLは、広く使われているオープンソースの関係性データベースで、高速性と信頼性が評価されています。MySQLのDocker化は、さまざまなアプリケーションでのデータベースの設定と管理を簡素化します。ACID準拠、レプリケーションとクラスタリングの堅牢なサポート、高性能な機能が主な特徴です。その用途は、ウェブアプリケーションのバックエンドストレージ、eコマースプラットフォームのデータストレージの管理、コンテンツ管理システムのサポートなど、さまざまなドメインでのさまざまなストレージニーズの適応性を示しています。 PostgreSQL PostgreSQLは、拡張性と標準への厳格な準拠で称賛される堅牢なオープンソースの関係性データベースです。PostgreSQLのDocker化により、展開に柔軟性をもたらす移植可能なレプリケーション可能なデータベース環境が実現できます。その特徴には、カスタム関数と演算子による拡張性、データの信頼性を保証するACID準拠、複雑なクエリの強力なサポートが含まれます。その用途は、ジオグラフィック情報システム(GIS)のパワーリング、データウェアハウジングのニーズのサポート、金融アプリケーションの複雑な要件への対応など、厳密なデータ処理とクエリ処理機能を必要とするさまざまなドメインに広がっています。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.